Sonochemical Synthesis of Nitrogen Doped TiO2 at a Low Temperature

Article Preview

Abstract:

A visible-light activated photocatalyst N-doped TiO2 nanocrystalline was synthesized via sonochemical method at low temperature. The N-doped anatase TiO2 nanoparticles were prapared by sonication of the solution of tetrabutyl titanium and ammonium in water and ethanol at 70 °C for 150 min. The crystalline forms and crystallite sizes of the as-prepared sample is characterized by X-ray diffraction, transmission electron microscopy, X-ray photoelectron spectroscopy and UV-Visible absorption spectrum.The product structure was dependent upon the reaction temperature and reaction time. The photocatalytic activity of the as-prepared photocatalyst was evaluated via the photodegradation of a basic dye methyl violet. The results show that the N-doped TiO2 nanocrystalline prepared by sonication has an excellent photocatalytic activity under UV light and simulated sunlight.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 356-360)

Pages:

403-406

Citation:

Online since:

October 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] M. R.Hoffmann, S. T.Martin, W.Choi and D.W. Bahnemann: Chem. Rev. Vol. 95(1995), p.69.

Google Scholar

[2] S. Sakthivel and H. Kisch: Angew. Chem. Vol.115(2003), p.5057

Google Scholar

[3] S. Sakthivel and H. Kisch: Chem. Phys. Chem. Vol. 4 (2003), p.487

Google Scholar

[4] J. M. Mwabora, T. Lindgren, E. Avendano, T. F. Jaramillo, J. Lu, S. E. Lindquist and C. G.. Granqvist: J. Phys. Chem. B Vol.108(2004), p.20193

Google Scholar

[5] Y. Nakano, T. Morikawa, T. Ohwaki and Y. Taga, Appl. Phys. Lett. Vol. 86(2005), p.132104.

Google Scholar

[6] L. Han, Y. Xin, H. Liu, X. Ma and G. Tang: J. Hazard. Mater. Vol.175(2010), p.524

Google Scholar

[7] A.Ghicov, J. M. Macak, H.Tsuchiya, J. Kunze, V. Haeublein, L. Frey and P. Schmuki, Nano Lett. Vol. 6(2006) , p.1080

DOI: 10.1021/nl0600979

Google Scholar

[8] Y. Aita, M. Komatsu, S.Yin, and T. Sato, J. Solid State Chem. Vol. 177(2004), p.3235

Google Scholar

[9] S. In, A. Orlov, F. Garcia, M.Tikhov, D. S. Wright and R. M. Lambert, Chem. Commun. Vol.42(2006), p.36

Google Scholar

[10] J. Wang, W. Zhu, Y. Zhang and S. Liu, J. Phys. Chem. C Vol. 111(2007), p.1010

Google Scholar

[11] R. Nakamura, T. Tanaka and Y. Nakato, J. Phys. Chem. B Vol.108(2004) , p.10617

Google Scholar

[12] T. Morikawa, R. Asahi, T. Ohwaki, K. Aoki and Y.T aga, Jpn. J. Appl. Phys. Vol.40(2001) , p. L561

Google Scholar

[13] E. B. Flint and K. S. Suslick, Science Vol. 253(1991) , p.1397

Google Scholar

[14] Y. T. Didenko, W. B. McNamara II and K. S. Suslick, J. Am. Chem. Soc. Vol. 121 (1999) , p.5817

Google Scholar

[15] D. L. Chen and L. Gao, J. Crystal Growth Vol. 264(2004) , p.216

Google Scholar

[16] R. A Salkar, P. Jeevanandam, S. T. Aruna, Y. Koltypin and A.Gedanken, J. Mater. Chem. Vol.9(1999) ) , p.1333

DOI: 10.1039/a900568d

Google Scholar

[17] N. C. Saha and H. G. Tompkins, J. Appl. Phys. Vol.72(1992) , p.3072

Google Scholar

[18] M. Sathish, B. Viswanathan, R. P. Viswanath and C. S. Gopinath, Chem. Mater. Vol.17(2005) , p.6349

Google Scholar