Removeal of Arsenic(III) from Water by Using a New Class of Zero-Valent Iron Modified Mesoporous Silica Molecular Sieves SBA-15

Article Preview

Abstract:

An elevated arsenic (As) content in groundwater imposes a great threat to people worldwide. Thus, developing new and cost-effective methods to remove As from groundwater and drinking water becomes a priority. Using Zero-Valent iron (ZVI) to remove As from water is a proven technology. In this study, ZVI modified SBA-15 mesoporous silicamolecular sieves (ZVI-SBA-15), was prepared, characterized, and used for removing arsenic from water. Wet impregnation, drying, and calcination steps led to iron inclusion within the mesopores. Iron oxide was reduced to ZVI by NaBH4, and the ZVI modified SBA-15 was obtained. Fourier-transform infrared spectroscopy confirmed the preparation process of the nitrate to oxide forms. The structure of the materials was confirmed by Powder X-ray diffraction. Its data indicated that the structure of ZVI-SBA-15 retained the host SBA-15 structure. Brunauer-Emmett-Teller analysis revealed a decrease in surface area and pore size, indicating ZVI-SBA-15 coating on the inner surfaces. Transmission electron micrographs also confirmed that modified SBA-15 retained the structure of the parent SBA-15 silica.It has a high uptake capability(more than 90 pecent) make it potentially attractive absorbent for the removal of arsenic from water.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 356-360)

Pages:

423-429

Citation:

Online since:

October 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] C.K. Jain, I. Ali, Water Res. 34 (2000), 4304–4312.

Google Scholar

[2] B.K. Mandal, K.T. Suzuki, Talanta 58 (2002), 201–235.

Google Scholar

[3] L.C. Roberts, S.J. Hug, T. Ruettimann, A.W. Khan, M.T. Rahman, Environ. Sci.Technol. 38 (2004), 307–315.

Google Scholar

[4] T.R. Holm, J. Am, Water Works Assoc. 94 (2002), 174–181.

Google Scholar

[5] J.F. Ferguson, J. Gavis, Water Res. 6 (1972), 1259–1274.

Google Scholar

[6] J.G. Hering, P.Y. Chen, J.A. Wilkie, M. Elimelech, J. Environ. Eng. 133 (1997), 103–111.

Google Scholar

[7] K.N. Scott, J.F. Green, H.D. Do, S.J. Mclean, J. AWWA 87 (1995), 114–126.

Google Scholar

[8] E.O. Kartinen Jr., C.J. Martin, Desalination 103 (1995), 79–88.

Google Scholar

[9] J.A. Wilkie, J.G. Hering, Colloids Surf., A 107 (1996), 97–110.

Google Scholar

[10] M. Jang, S.H. Min, T.H. Kim, J.K. Park, Environ. Sci. Technol. 40 (2006), 1636–1643.

Google Scholar

[11] J.J. Waypa, M. Elimelech, J.G. Hering, J. AWWA 89 (1997), 102–116.

Google Scholar

[12] W. Driehaus, M. Jekel, U. Hildebrandt, J. Water SRT-Aqua. 471–6 (1998).

Google Scholar

[13] A. Maiti, S. DasGupta, J.K. Basu, S. De, Sep. Sci. Technol. 55 (2007), 350–359.

Google Scholar

[14] W. Driehaus, R. Seith, M. Jekel, Water Res. 29 (1994), 297–305.

Google Scholar

[15] T.S. Singh, K.K. Pant, Sep. Sci. Technol. 36 (2004), 139–147.

Google Scholar

[16] Manning, B. A.;Hunt,M.; Amrhein,C.; Yarmoff, J. A. Arsenic(III) and arsenic(V) reactionswith zerovalent ironcorrosionproducts. Environ. Sci. Technol. 36 (2002), 5455-5461.

DOI: 10.1021/es0206846

Google Scholar

[17] Su, C.; Puls, R.W. Arsenate and arsenite removal by zerovalent iron: kinetics, redox transformation, and implications for in situ groundwater remediation. Environ. Sci. Technol. 35 (2001), 1487-1492.

DOI: 10.1021/es001607i

Google Scholar

[18] Su, C.; Puls, R.W. Arsenate and arsenite removal by zerovalent iron: effects of phosphate, silicate, carbonate, borate, sulfate, chromate,molybdate, and nitrate, relative to chloride. Environ. Sci. Technol. 35 (2001), 4562-4568.

DOI: 10.1021/es010768z

Google Scholar

[19] Farrell, J.; Wang, J.; O'Day, P.; Coklin, M. Electrochemical and spectroscopic study of arsenate removal fromwater using zero-valent iron media. Environ. Sci. Technol. 35 (2001), 2026- 2032.

DOI: 10.1021/es0016710

Google Scholar

[20] Lackovic, J. A., Nikolaids, N. P., Dobbs, G.M. Inorganic arsenic removal by zero-valent iron. Environ. Eng. Sci. 17 (2000), 29-39.

DOI: 10.1089/ees.2000.17.29

Google Scholar

[21] Charlet L.; Manceau, A. Structure, formation and reactivity of hydrous oxide particles; insights from X-ray absorption spectroscopy. In Environmental Particles II; Buffle, J., Van Leeuwen, H. P., Eds.; IUPAC Environmental Analytical and Physical Chemistry Series; Lewis Publishers: Chelsea, MI, 1993.

DOI: 10.1201/9781351270809-3

Google Scholar

[22] Ponder, S.M. Darab, J. C.;Mallouk, T. E. Remediation of Cr(VI) and Pb(II) aqueous solutions using supported, nanoscale zero-valent iron. Environ. Sci. Technol. 34 (2000), 2564-2569.

DOI: 10.1021/es9911420

Google Scholar

[23] K.S.W. Sing D.H. Everett R.A.W. Hauletal.,"Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity," Pure and Applied Chemistry, vol. 57, no. 4 (1985) , p.603–619.

DOI: 10.1351/pac198557040603

Google Scholar

[24] Z. Luan, J. A. Fournier, J. B. Wooten, and D. E. Miser,"Preparation and characterization of (3-aminopropyl) triethoxysilane-modifiedmesoporous SBA-15 silicamolecular sieves," Microporous and Mesoporous Materials, vol. 83, no.1–3 (2005), p.150–158,.

DOI: 10.1016/j.micromeso.2005.04.006

Google Scholar

[25] A. L. Doadrio, E. M. B. Sousa, J. C. Doadrio, J. P´ erez Pariente,I. Izquierdo-Barba, and M. Vallet-Reg´ ı, "Mesoporous SBA-15 HPLC evaluation for controlled gentamicin drug delivery," Journal of Controlled Release, vol. 97, no. 1 (2004), p.125–132.

DOI: 10.1016/j.jconrel.2004.03.005

Google Scholar

[26] S. A. Mirji, S. B. Halligudi, D. P. Sawant et al., "Adsorption of octadecyltrichlorosilane on mesoporous SBA-15," Applied Surface Science, vol. 252, no. 12 (2006), p.4097–4103.

DOI: 10.1016/j.apsusc.2005.06.009

Google Scholar