Photodegradation of 2-Naphthalenesulfonate in Aqueous Catalyzed by N-Doped TiO2 under Irradiation of Simulated Solarlight

Article Preview

Abstract:

N/TiO2 photocatalyst was synthesized by modified sol–gel method and characterized by XRD, XPS and DRS. The photoactivity of N/TiO2 were evaluated by the degradation of 2-naphthalenesulfonate (2-NS) under different light sources. The results showed that nitrogen doping may cause band gap narrowing of TiO2, and therefore increase the photocatalytivity of N/TiO2 under visible-light. The average particle size of the N/TiO2 synthesized is about 10 nm, and the N/TiO2 contains 100% anatase phase of TiO2. The dopant is found mainly to be NOx and the doping concentration in NT is 1.30%. The NT shows very high efficiency for the catalysis of the degradation of 2-NS. The degradation efficiency of 2-NS using NT under visible light for 5 h is 47.29%, much higher than 2.5% of the pure TiO2.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 356-360)

Pages:

471-475

Citation:

Online since:

October 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] T. Storm, T. Reemtsma, M. Jekel, J. Chromatogr. A 854(1999) 175–185.

Google Scholar

[2] Y.H. Chen, C.Y. Chang, S.F. Huang, S.F. Huang, N.C. Shang, C.Y. Chiu, Y.H. Yu, P.C. Chiang, J.L. Shie, C.S. Chiou, J. Hazard. Mater. 118( 2005) 177-183.

Google Scholar

[3] Y.H. Chen, C.Y. Chang, S.F. Huang, C.Y. Chiu, D. Ji, N.C. Shang, Y. H. Yu, P.C. Chiang, Y. Ku, J.N. Chen, Water Res. 36(2002) 4144–4154.

DOI: 10.1016/s0043-1354(02)00135-5

Google Scholar

[4] V. Camel, A. Bermond, Water Res. 32(1998)3208–3222.

Google Scholar

[5] C.C.D. Yao, W.R. Haag, Water Res. 25(1991)761–773.

Google Scholar

[6] C.M. Lin, J.L. Wang, M.X. Xu, J. Chem. Eng. of Chinese Univ. 19(2005)103-107(In Chinese).

Google Scholar

[7] M.R. Hoffmann, S.T. Martin, W. Choi, D.W. Bahnemann, Chem. Rev. 95(1995) 69-96.

Google Scholar

[8] A. Fujshima, T.N. Rao, D.A. Tryk, J. Photochem. Photobiol. C: 1(2000) 1-21.

Google Scholar

[9] T.L. Thompose, J.T. Yates, Top. Catal. 35(2005)197-210.

Google Scholar

[10] J.C. Yu, W.K. Ho, J.G.Yu, H. Yip, P.K. Wong, J.C. Zhao, Environ. Sci. Technol. 39(2005)1175-1179.

Google Scholar

[11] R. Asahi, T. Morikawa, T. Ohwaki, K. Aoki, Y. Taga, Science 293(2001)269-271.

DOI: 10.1126/science.1061051

Google Scholar

[12] Y. Liu, X. Chen, J. Li, C. Burda, Chemosphere 61(2005)11-18.

Google Scholar

[13] X.T. Hong, Z.P. Wang, W.M. Cai, F. Lu, J. Zhang, Y.Z. Yang, N. Ma, Y.J. Liu, Chem. Mater. 17(2005)1548-1552.

Google Scholar

[14] M. Mrowetz, E.Selli, Phys. Chem. Chem. Phys. 7(2005)1100-1102.

Google Scholar

[15] G. S. Wu, J. P. Wang, D.F. Thomas, A.C. Chen, Langmuir 24(2008) 3503-3509.

Google Scholar

[16] W.J. Ren, Z.H. Ai, F.L. Jia, L.Z. Zhang, X.X. Fan, Z.G .Zou, Appl. Catal. B: 69(2007)138-144.

Google Scholar

[17] H.Q. Sun, Y. Bai, H.J. Liu, W.Q. Jin, N.P.Xu, J. Photochem. Photobiol.A: Chem.201 (2009)15-22.

Google Scholar

[18] C. Burda Y.B. Lou, X.B. Chen, A.C.S. Samia, J. Stout, J. L.Gole, Nano Lett. 3(2003)1049-1151.

Google Scholar

[19] Y.C. Hong, C.U. Bang, D.H, Shin H.S. Uhm, Chem. Phys. Lett. 413(2005)454-457.

Google Scholar

[20] Huaguo Hu, Yuping Wang, Lingyan Gu, Panying Peng, J. Nanjing Normal University 32(2009)76-83(In Chinese).

Google Scholar

[21] A. Jirapat, K. Puangrat, S. Supapan, J. Hazard. Mater. 168 (2009)253–261.

Google Scholar

[22] X.Y. Xu, W.G. Shi, X.B. Hu, Y. Xiang, Bull. Ceram. Soc. China 28(2009)332-335.

Google Scholar