Sorption of Ag+, Cu2+ on Thiol-Functionalized Poly (Acrylic Acid)/SiO2 Composite Nanofiber Membranes

Article Preview

Abstract:

Thiol-functionalized poly (acrylic acid)/SiO2 (PAA/SiO2) composite nanofiber membranes have been fabricated by a sol-gel electrospinning method and their adsorption capacity for Ag+, Cu2+ was investigated. Results showed the PAA/SiO2 fibers had a diameter between 300 nm-700 nm. FTIR results demonstrated that the mercapto groups have been introduced into the silica skeleton. The adsorption of Ag+, Cu2+ on the membranes fit the Redlich-Peterson isotherm model best. The equilibrium adsorption capacity of Ag+ (575.64 mg/g) on PAA/SiO2 nanofiber membranes is higher than Cu2+ (331.52 mg/g). The desorption rate reached 98% in 30 min. The removal rate of Ag+, Cu2+ still maintained above 75% after six regeneration cycles. Adsorption kinetics of Ag+, Cu2+ followed a pseudo-second-order model.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 356-360)

Pages:

488-492

Citation:

Online since:

October 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] M. Mureseanu, A.Reiss, I. Stefanescu, E. David, V. Parvulescu, G. Renard and V. Hulea: Chemophere Vol. 73 (2008), p.1499

DOI: 10.1016/j.chemosphere.2008.07.039

Google Scholar

[2] H. Yang, R. Xu, X. M. Xue, F. T. Li and G. T. Li: J. Hazard. Mater. Vol. 152 (2008), p.690

Google Scholar

[3] X. M. Xue and F. T. Li: Micropor. Mesopor. Mater. Vol. 116 (2008), p.116

Google Scholar

[4] C. S. Ki, E. H. Gang, I. C. Um and Y. H. Park: J. Membr. Sci. Vol. 302 (2007), p.20

Google Scholar

[5] S. L. Xiao, M. W. Shen, H. Ma, R. Guo, M. F. Zhu, S. Y. Wang and X. Y. Shi: J. Appl. Polym. Sci. Vol. 116 (2010), p.2409

Google Scholar

[6] A. R. Cestari, F. S. Vieira, G. S. Vieira, L. P. Costa, M. G. Tavares, W. Loh and C. Airoldi: J. Hazard. Mater. Vol. 161 (2009), p.307

Google Scholar

[7] D. P. Quintanilla, I. D. Hierro, M. Fajardo and I. Sierra: J. Hazard. Mater. Vol.134 (2006), p.245

Google Scholar

[8] M. M. Teng, H. T. Wang, F. T. Li and B. R. Zhang: J. Colloid Interface. Sci. Vol. 355 (2011), p.23

Google Scholar

[9] S. J. Wu, F. T. Li, R. Xu, S. H. Wei and G. T. Li: J. Nanopart. Res. Vol. 12 (2009), p.2111

Google Scholar

[10] K. V. Kumar: J. Hazard. Mater. Vol. 137 (2006), p.1538

Google Scholar

[11] Y. S. Ho and G. M. Kay: Process. Biochem. Vol. 59 (2005), p.829

Google Scholar