Studies on Optical Properties of CdS/ZnO Quantum Dots Prepared by Sol-Gel Method

Article Preview

Abstract:

CdS/ZnO quantum dots (QDs) were prepared at a temperature of 293 K by the sol-gel method with Triethanolamine (TEA) as a capping agent. The effect of CdS/ZnO mixture ratio of 1:9, 1:1 and 9:1 on the optical absorption and fluorescence spectra were investigated by UV-Vis and Fluorescence spectroscopy. By increasing ZnO composition, a blue-shift of absorption edge and emission spectra were observed. The band gap for 1:9, 1:1 and 9:1 were found to be 4.13, 3.93 and 3.11 eV, respectively. The morphology of the CdS/ZnO QDs for each mixing ratio was obtained by transmission electron microscope (TEM). The size of the QDs was found to be in the range of 5-10 nm with some agglomerated particles.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

129-133

Citation:

Online since:

October 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] T.W. Fan, S.J. Teh, D.E. Hinton & R.M. Higashi. Aquatic toxicology. 57(1–2) (2002), p.65–84.

Google Scholar

[2] S.J. Hamilton. Sci Total Environ 326(1–3) (2004) 1–31.

Google Scholar

[3] M.C. Henson & P.J. Chedrese. Exp Biol Med (Maywood) 229(5) (2004) 383–392.

Google Scholar

[4] S. Satarug & M.R. Moore. Environ Health Perspect. 112(10) (2004) 1099–1103.

Google Scholar

[5] M. Kondoh, S. Araragi, K. Sato, M. Higashimoto, M. Takiguchi & M. Sato. Toxicology. 170 (2002) 111-117.

DOI: 10.1016/s0300-483x(01)00536-4

Google Scholar

[6] A.H.B. Poliandri, J.P. Cabilla, M.O. Velardez, C.C. A Bodo & B.H. Duvilanski. Toxicology and applied. 190 (2003) 17-24.

Google Scholar

[7] W. -h. Yang, W. -w. Li, H. -j. Dou & K. Sun: Materials Letters. 62 (2008) (17-18) 2564-2566.

Google Scholar

[8] P.S. Khiew, S. Radiman, N.M. Huang, & Md.S. Ahmad: Journal of Crystal Growth. 254 (2003) (1-2) 235-243.

Google Scholar

[9] M. Mahyar, Z. Saeid, K. Amir, G. Parisa, T. Shadi, L. Aidin, M. Matin, & S.K. Sadrnezhaad: Jurnal of Ultrasonic Sonochemistry. 7 (2008) (16)11-14.

Google Scholar

[10] Y. He, L.M. Sai, H.T. Lu, M. Hu, W.Y. Lai, Q. L. Fan, L. H. Wang & W. Huang: Chem. Mater. 19 (2007) 359-65.

Google Scholar

[11] D.M. Bagnall, Y.F. Chen, Z. Zhu, T. Yao, M.Y. Shen, T. Goto: Appl. Phys. Lett. 73 (1998) 1038.

Google Scholar

[12] R. Memming: Semiconductor Electrochemistry, Wiley–VCH, Weinheim (2001).

Google Scholar

[13] E. Rzepka, J.P. Roger, P. Lemasson, R. Triboulet: Journal of Crystal Growth 197 (3) (1999) pp.480-484.

DOI: 10.1016/s0022-0248(98)00773-8

Google Scholar

[14] R. Kubo: J. Phys. Soc. Japan 17 (1962) 975.

Google Scholar

[15] R.S. Silva, P.C. Morais, A.M. Alcalde, Fanyao Qu, A.F.G. Monte, N.O. Dantas: J. Non-Cryst. Solids 352 (2006) 3522.

Google Scholar