Properties of Amorphous Silica Entrapped Isoniazid Drug Delivery System

Article Preview

Abstract:

This work describes the properties of silica drug delivery system (DDS) produced using micelles entrapment approach. Isoniazid, which is a water soluble drug for tuberculosis was used in the system. The effects of synthesis parameters were systematically studied such as synthesis temperature (38-70°C), amount of butanol co-solvent (6-18 ml), and amount of Si organic precursor (2-8 ml). From transmission electron microscope (TEM) images, the size of DDS could be tuned from 21-104 nm by changing the reaction temperature. The increase of butanol co-solvent enlarged the size of DDS in the range of 40-94 nm. A similar trend was observed for DDS with increasing organic Si precursor whereby the particle size could be tuned from 40-132 nm. However, at high organic Si precursor of > 2 ml, a bimodal structure of DDS was observed. Stability study in biological media at 37°C of selected sample showed that the produced DDS had acceptable degree of agglomeration.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

134-138

Citation:

Online since:

October 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Y. Zhu and J. Shi: Micropor. Mesopor. Mater. Vol. 103 (2007), p.243.

Google Scholar

[2] J. M. Rosenholm, C. Sahlgren and M. Linden: Nanoscale Vol. 2 (2010), p.1870.

Google Scholar

[3] S. Wang: Micropor. Mesopor. Mater. Vol. 117 (2009), p.1.

Google Scholar

[4] M. J. K. Thomas, I. Slipper, A. Walunj, A. Jain, M. E. Favretto, P. Kallinteri, D. Douromis: Int. J. Pharm. Vol. 387 (2010), p.272.

Google Scholar

[5] G. A. Husseini, W. G. Pitt: Adv. Drug Delivery Rev. Vol. 60 (2008), p.1137.

Google Scholar

[6] M. Vallet-Regi, A. Ramilla, R. P. del Real, J. Perez-Pariente: Chem. Mater. Vol. 13 (2001), p.308.

Google Scholar

[7] R. Lindberg, J. Sjöblom, G. Sundholm.: Colloids Surf., A. Vol. 99 (1995), p.79.

Google Scholar

[8] Y. Wang, C. Tang, Q. Deng, C. Liang, D. H. L. Ng, F. Kwong, H. Wang, W. Cai, L. Zhang, G. Wang: J. Am. Chem. Soc. Vol 26 (18), (2010), p.14830.

Google Scholar

[9] J. Guo, X. Liu, Y. Cheng, Y. Li, G. Xu, P. Cui: J. Colloid Interface Sci., Vol. 326 (2008), p.138.

Google Scholar

[10] Q. He, X. Cui, F. Cui, L. Guo, J. Shi: Micropor. Mesopor. Mater. Vol. 117 (2009), p.609.

Google Scholar

[11] I. A. M. Ibrahim, A. A. F. Zikry, M. A. Sharaf: J. Am. Chem. Soc. Vol. 6 (11), (2010), p.985.

Google Scholar

[12] K. S. Rao, K. E. Hami, T. Kodaki, K. Matsushige, K. Makino: J. Colloid Interface Sci. Vol. 289 (2005), p.125.

DOI: 10.1016/j.jcis.2005.02.019

Google Scholar