Strucutural Color Bio-Engineering by Replicating Morpho Wings

Article Preview

Abstract:

Cover scales and ground scales are found to be responsible for the greenish blue color of Morpho menelaus. From simulation predictions, different colors can be engineered by controlled thickness coatings on surface of scales. By replicating the morphologies of scales with low-temperature atomic layer deposition (ALD) methods, tunable colors are achieved successful by regulations of deposition cycles of Al2O3 in the organic-inorganic hybrid structures. After removal of original structures by means of high temperatures, inverted nanostructures exhibiting colors sealed by Al2O3 shell are fabricated. Simulation results of the hybrid and inverted structures are in accordance with experimental results well. The predictable spectra and the executable precisely controlled deposition by ALD provide us the potential of designing and constructing diversified structural colors.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 391-392)

Pages:

409-417

Citation:

Online since:

December 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] R. O. Prum, R. H. Torres, S. Williamson, and J. Dyck: Nature Vol. 396 (1998), p.28.

Google Scholar

[2] J. Zi, X. D. Yu, L. Z. Li, X. H. Hu, C. Xu, X. J. Wang, X. H. Liu, and R. T. Fu: Proc. Natl. Acad. Sci. Vol. 100 (2003), p.12576.

Google Scholar

[3] T. D. Schultz, and G. D. Bernard: Nature Vol. 337 (1989), p.72.

Google Scholar

[4] A. R. Parker, D. R. Mckenzie, and M. C. J. Large: J. Exp. Biol. Vol. 201 (1998), p.1307.

Google Scholar

[5] P. Vukusic, J. R. Samples, C. R. Lawrence, and R. J. Wootton: Proc. R. Soc. Lond. B Vol. 266 (1999), p.1403.

Google Scholar

[6] S. Berthier, E. Charron, and A. Da Silva: Opt. Commun. Vol. 228 (2003), p.349.

Google Scholar

[7] S. Kinoshita, S. Yoshioka, and K. Kawagoe: Proc. R. Soc. Lond. B Vol. 269 (2002), p.1417.

Google Scholar

[8] S. Kinoshita, and S. Yoshioka: ChemPhysChem Vol. 6 (2005), p.1442.

Google Scholar

[9] A. R. Parker, V. L. Welch, D. Driver, and N. Martini: Nature Vol. 426 (2003), p.786.

Google Scholar

[10] J. P. Vigneron, J.-F. Colomer, N. Vigneron, and V. Lousse: Phys. Rev. E Vol. 77 (2008), p.050904(R).

Google Scholar

[11] L. Q. Ren, Z. M. Qiu, Z. W. Han, H. Y. Guan, and L. Y. Wu: Sci China Ser E-Tech Sci Vol. 50(4) (2007), p.430.

Google Scholar

[12] Z. W. Han, L. Y. Wu, Z. M. Qiu, and L.Q. Ren: Chin Sci Bull Vol. 54(4) (2009), pp.535-540

Google Scholar

[13] Y. H. Qin, F. Liu, H. W. Yin, Y. L. Wang, X. H. Liu, and L. Zhao: Chin Sci Bull Vol. 18(52) (2007), p.2101.

Google Scholar

[14] F. Liu, H. W. Yin, B. Q. Dong, Y. H. Qin, M. Serge, L. Zhao, X. H. Liu, J. Zi, and B. Chen: Phys Rev E Vol. 77 (2008), p.012901.

Google Scholar

[15] F. Liu, G. B. Wang, L. P. Jiang, and B. Q. Dong: J Opt. Vol. 12 (2010), p.065301.

Google Scholar

[16] J. N. Lythgoe, and J. Shand: J. Exp. Biol. Vol. 141 (1989), p.313.

Google Scholar

[17] A. R. Parker, R. C. McPhedran, D. R. Mckenzie, L. C. Botten, and N.-A. P. Nicorovici: Nature Vol. 409 (2001), p.36.

DOI: 10.1038/35051168

Google Scholar

[18] V. Welch, J. P. Vigneron, V. Lousse, and A. Parker: Phys. Rev. E Vol. 73 (2006), p.041916.

Google Scholar

[19] D. W. Lee, and J. B. Lowry: Nature Vol. 254 (1975), p.50.

Google Scholar

[20] D. W. Lee: Nature Vol. 349 (1991), p.260

Google Scholar

[21] A. R. Parker, and H. E. Townley: Nature nanotech. Vol. 2 (2007), p.347.

Google Scholar

[22] O. Sato, S. Kubo, and Z.-Z. Gu: Acc. Chem. Res. Vol. 42 (2009), p.1.

Google Scholar

[23] H. Kim, J. P. Ge, J. Kim, S. Choi, H. Lee, H. Lee, W. Park, Y. D. Yin, and S. Kwon: Nature photon. Vol. 3 (2009), p.534.

Google Scholar

[24] G. M. Zhang, J. Zhang, G. Y. Xie, Z. F. Liu, and H. B. Shao: Small Vol. 2 (2006), p.1440.

Google Scholar

[25] T. S. Kustandi, H. Y. Low, J. H. Teng, J. H. Teng, I. Rodriguez, and R. Yin: Small Vol. 5 (2009), p.574.

Google Scholar

[26] J. Y. Huang, X. D. Wang, and Z. L. Wang: Nano Lett. Vol. 6 (2006), p.2325.

Google Scholar

[27] J. Y. Huang, X. D. Wang, and Z. L. Wang: Nanotechnology Vol. 19 (2008), p.025602.

Google Scholar

[28] D. P. Gaillot, O. Deparis, V. Welch, B. K. Wagner, J. P. Vigneron, and C. J. Summers: Phys. Rev. E Vol. 78 (2008), p.031922.

Google Scholar

[29] R. J. Martin-Palma, C. G. Pantano, and A. Lakhtakia: Nanotechnology Vol. 19 (2008), p.355704.

Google Scholar

[30] J. Han, H. L. Su, C. F. Zhang, Q. Dong, W. Zhang, and D. Zhang: Nanotechnology Vol. 19 (2008), p.365602.

Google Scholar

[31] J. Han, H. L. Su, F.Song, J. J. Gu, D. Zhang, and L. M. Jiang: Langmuir 25 (2009), p.3207.

Google Scholar

[32] M. Knez, K. Nielsch: Adv. mater. Vol. 19 (2007), p.3425.

Google Scholar

[33] M. D. Shawkey, A. M. Estes, L. M. Siefferman, and G. E. Hill: Proc. R. Soc. B Vol. 270 (2003), pp.1455-1460.

Google Scholar

[34] J. B. Pendry, and A. Mackinnon: Phys. Rev. Lett.Vol. 9 (1992), p.2772.

Google Scholar

[35] J. Zi, J. Wan, and C. Zhang: Appl. Phys. Lett. Vol. 73 (1998), p.2084.

Google Scholar

[36] F. H. Fabreguette, J. W. Elam, and S. M. George: Chem.Mater. Vol. 16 (2004), p.639.

Google Scholar

[37] J. P. Vigneron, M. Rassart, C. Vandenbem, V. Lousse, O. Deparis, L. P. Biró, D. Dedouaire, A. Cornet, and P. Defrance: Phys. Rev. E Vol. 73 (2006), p.041905.

DOI: 10.1103/physreve.73.041905

Google Scholar