Magnetoresistance and Exchange Bias Effect of (Co2MnSi)1-X-(NiO)X Nanocomposites

Article Preview

Abstract:

The (Co2MnSi)1-x-(NiO)x (x = 0.0, 0.1, 0.2, 0.3) nanocomposites were fabricated by mechanical alloying using Co2MnSi Heusler alloy and NiO nanoparticles. It is revealed that antiferromagnetic NiO nanocrystallines dramatically enhances the magnetoresistance of the nanocomposites more than 20 times larger than that of the NiO-free Co2MnSi alloys at 300 K. The Exchange bias effect of the nanocomposites suggests that the spin-dependent tunneling and scattering at the interfaces of ferromagnetic/antiferromagnetic are responsible for the enhancement of the magnetoresistance.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 399-401)

Pages:

620-624

Citation:

Online since:

November 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] R. De Groot, F. Mueller, P.G. Engen and K. Buschow: Phys. Rev. Lett. vol. 50 (1983), p.(2024)

Google Scholar

[2] I. Galanakis, P. Dederichs and N. Papanikolaou: Phys. Rev. B. vol. 66 (2002), p.174429

Google Scholar

[3] S. Datta and B.Das: Appl. Phys. Lett. vol. 56 (1990), p.665

Google Scholar

[4] K.A. Kilian and R.H. Victora: J. Appl. Phys. vol. 87 (2000), p.7064

Google Scholar

[5] J.M.D. Coey: J. Appl. Phys. vol. 85 (1999), p.6

Google Scholar

[6] H. Ju, J. Gopalakrishnan, J. Peng, Q. Li, G. Xiong, T. Venkatesan and R. Greene: Phys. Rev. B. vol. 51 (1995), p.6143

Google Scholar

[7] S. Wurmehl, G.H. Fecher, H.C. Kandpal, V. Ksenofontov, C. Felser and H. J. Lin: Appl. Phys. Lett. vol. 88 (2006), p.032503

Google Scholar

[8] S. Wurmehl, G.H. Fecher, V. Ksenofontov, F. Casper, U. Stumm, C. Felser, H. J. Lin and Y. Hwu: J. Appl. Phys. vol. 99 (2006), p.08J103

DOI: 10.1063/1.2167330

Google Scholar

[9] T.Block, C. Felser, G. Jakob, J. Ensling,B. Mühling,P. Gutlich and R.J. Cava: J. Solid State Chem. vol. 176 (2003), p.646

DOI: 10.1016/j.jssc.2003.07.002

Google Scholar

[10] T.Graf, S.S.P. Parkin and C. Felser: IEEE Trans. Magn. vol. 47 (2011), p.367

Google Scholar

[11] T. Block, S. Wurmehl, C. Felser and J. Windeln: Appl. Phys. Lett. vol. 88 (2006), p.202504

Google Scholar

[12] Y. Miura, M. Shirai and K. Nagao: J. Appl. Phys. vol. 99 (2006), p.08J112

Google Scholar

[13] Y. Sakuraba, T. Iwase, K. Saito, S. Mitani and K. Takanashi: Appl. Phys. Lett. vol. 94 (2009), p.012511

Google Scholar

[14] T. Ishikawa, H.X. Liu, T. Taira, K.I. Matsuda, T. Uemura and M. Yamamoto: Appl. Phys. Lett. vol. 95 (2009), p.232512

Google Scholar

[15] L.J. Singh, C.W. Leung, C. Bell, J.L. Prieto and Z.H. Barber: J. Appl. Phys. vol. 100 (2006), p.013910

Google Scholar

[16] R.H. Kodama, S.A. Makhlouf and A.E. Berkowitz: Phys. Rev. Lett. vol. 79 (1997), p.1393

Google Scholar

[17] M. Kallmayer, H.J. Elmers, B. Balke, S. Wurmehl, F. Emmerling, G.H. Fecher and C. Felser: J. Phys. D: Appl. Phys. vol. 39 (2006), p.786

DOI: 10.1088/0022-3727/39/5/s03

Google Scholar

[18] A.D. Rata, H. Braak, D.E. Bürgler and C.M. Schneider: J. Appl. Phys. vol. 101 (2007), p.09J503

Google Scholar

[19] S. Kämmerer, S. Heitmann, D. Meyners, D. Sudfeld, A. Thomas, A. Hütten and G. Reiss: J. Appl. Phys. vol. 93 (2003), p.7945

DOI: 10.1063/1.1556249

Google Scholar

[20] H.L. Ju, J. Gopalakrishnan, J.L. Peng, Q. Li, G.C. Xiong, T. Venkatesan and R. Greene: Phys. Rev. B. vol. 51 (1995), p.6143

Google Scholar

[21] P. Schiffer, A.P. Ramirez, W. Bao and S.W. Cheong: Phys. Rev. Lett. vol. 75 (1995), p.3336

Google Scholar