Optical Properties Characterization of InGaN/GaN near UV Photodetector with Surface Nano-Structure Fabricated by Nano-Imprinting

Article Preview

Abstract:

An InGaN/GaN-based photodetector with nano-structure on the surface is present. Surface nano-structure was formed by nanoimprint lithography (NIL) and reactive ion etching (RIE) techniques. The NIL technique and nano-structure etching by employing RIE were demonstrated in details. The nano-pattern was designed as regular triangles consisting of columns, whose diameter and period were around 105 and 210 nm, respectively. The height of nano-columns was around 66 nm. The photo-voltage of this type of photodetector had very good wave characteristics with 60° period, and it presented different waveform at different angles and wavelengths of incident light. The periodic characteristics took not only on minimum voltage but also peak voltage. We demonstrated this characteristic by employing Bragg formulation.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 399-401)

Pages:

629-634

Citation:

Online since:

November 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] M. Paulose, K. Shankar, S. Yoriya, H. E. Prakasam, O. K. Varghese, G. K. Mor, T. A. Latempa, A. Fitzgerald and C. A. Grimes: J. Phys. Chem. B 110 (2006), p.16179

DOI: 10.1021/jp064020k

Google Scholar

[2] Y. Gu, E. S. Kwak, J. L. Lensch, J. E. Allen, T. W. Odom and L. J. Lauhon: Appl. Phys. Lett. 87 (2005), p.043111

Google Scholar

[3] F. D. Angelis, M. Patrini, G. Das, I. Maksymov, M. Galli, L. Businaro, L. C. Andreani and E. D. Fabrizio: Nano Lett. 8 (2008), p.2321

DOI: 10.1021/nl801112e

Google Scholar

[4] J. Zhang, Y. Naoi, S. Sakai, A. Fukano, and S. Tanaka: Jpn. J. Appl. Phys. 48 (2009), p.111001

Google Scholar

[5] J. Zhang, Y. Naoi, S. Sakai, A. Fukano, and S. Tanaka: Phys. Status Solidi C 7 (2009), p.1804

Google Scholar

[6] H.Matumoto, S. Yoshimoto, H. Saito, Y. Jianglin, Y. Tanaka and S. Noda: Science 319 (2008), p.445

Google Scholar

[7] M.Imada, S. Noda, A. Chutinan and T. Tokuda: Appl. Phys. Lett. 75 (1999), p.316

Google Scholar

[8] B. Song, S. Noda, T. Asano and Y. Akahane: Nature 4 (2005), p.207

Google Scholar

[9] T. N. Oder, K. H. Kim, J. Y. Lin and H. X. Jiang: Appl. Phys. Lett. 84 (2004), p.466

Google Scholar

[10] K. Orita, S. Tamura, T. Takizawa, T. Ueda, M. Yuri, S. Takigawa and D. Ueda: Jpn. J. Appl. Phys. 43 (2004), p.5809

DOI: 10.1143/jjap.43.5809

Google Scholar

[11] D. H. Kim, C. C. Cho, Y. G. Roh, H. Jeon, Y. S. Park, J. Cho, J. S. Im, C. Sone, Y. Park, W. J. Choi and Q. H. Park: Appl. Phys. Lett. 87 (2005), p.203508

Google Scholar

[12] B. J .Kim, M. A. Mastro, H. Jung, H. Y. Kim, S. H. Kim, R. T. Holm, J. Hite, C. R. Eddy Jr, J. Bang and J. Kim: Thin Solid Films 516 (2008), p.7744

DOI: 10.1016/j.tsf.2008.05.046

Google Scholar

[13] H. K. Cho, J. Jang, J. H. Choi, J. Kim, J. S. Lee: Opt.Express 14 (2006), p.8654

Google Scholar

[14] H. Ono, Y. Ono, K. Kasahara, J. Mizuno and S. Shoji: Jpn. J. Appl. Phys. 47 (2008), p.935

Google Scholar

[15] J. Cho, S. Cho, B. Chae, C. Sone, O. H. Nam, J. W. Lee, Y. Park, and T. I. kim: Appl. Phys. Lett. 76 (2000), p.1489

Google Scholar