Calculation of Phonon Dispersion for 3d Transition Metals Cr and Fe by Modified Analytic Embedded Atom Method

Article Preview

Abstract:

The modified analytical embedded atom method is applied to calculate the phonon dispersion of body-centered cubic 3d transition metals Cr and Fe along five symmetry directions [q 0 0], [1 q q], [q q q], [q q 0] and [1/2 1/2 q]. Our results of phonon dispersion curves are in good agreement with the available experimental data. For the two transition metals Cr and Fe, along the same direction, a similar phonon dispersion curve is obtained in spite of the phonon frequency decreases for Cr and Fe due to the atom mass increases. There are no experimental results for comparison along the directions [1 q q] and [1/2 1/2 q], further experimental measurement are needed.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

532-536

Citation:

Online since:

November 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] N. Singh, N.S. Banger, S.P. Singh, Phonon dispersion of bcc transition metals using the temperature-dependent pair potential, Phys. Rev. B 39 (1992) 12915-12917.

DOI: 10.1103/physrevb.39.12915

Google Scholar

[2] J.C. Upadhyaya, S. S. Sharma, O. P. Kulshrestha, Crystal equilibrium and phonon dispersion in some bcc transition metals, Phys. Rev. B 12 (1975) 2236-2242.

DOI: 10.1103/physrevb.12.2236

Google Scholar

[3] E.I. Isaev, S.I. Simak, I.A. Abrikosov, R. Ahuja, Y.K. Vekilov, M.I. Katsnelson, A.I. Lichtenstein, B. Johansson, Phonon related properties of transition metals, their carbides, and nitrides: A first-principles study, J. Appl. Phys. 101 (2007) 123519.

DOI: 10.1063/1.2747230

Google Scholar

[4] G. Simonelli, R. Pasianot, E. J. Savino, Phonon dispersion curves for transition metals within the embedded-atom and embedded-defect methods, Phys. Rev. B 55 (1997) 5570-5573.

DOI: 10.1103/physrevb.55.5570

Google Scholar

[5] D. Finkenstadt, N. Bernstein, J.L. Feldman, M.J. Mehl, D.A. Papaconstantopoulos, Vibrational modes and diffusion of self-interstitial atoms in body-centered-cubic transition metals: A tight-binding molecular-dynamics study, Phys. Rev. B 74 (2006) 184118.

DOI: 10.1103/physrevb.74.184118

Google Scholar

[6] B.W. Zhang, Y.F. Ouyang, Theoretical calculation of thermodynamic data for bcc binary alloys with the embedded-atom method, Phys. Rev. B 48 (1993) 3022-3029.

DOI: 10.1103/physrevb.48.3022

Google Scholar

[7] B.W. Zhang, Y.F. Ouyang, S.Z. Liao, Z.P. Jin, An analytic MEAM model for all BCC transition metals, Physica B 262 (1999) 218-225.

DOI: 10.1016/s0921-4526(98)01156-9

Google Scholar

[8] M.S. Daw, M.I. Baskes, Semiempirical, quantum mechanical calculation of hydrogen embrittlement in metals, Phys. Rev. Lett. 50 (1983) 1285-1288.

DOI: 10.1103/physrevlett.50.1285

Google Scholar

[9] R.A. Johnson, Analytic nearest-neighbor model for fcc metals, Phys. Rev. B 37 (1988) 3924-3931.

DOI: 10.1103/physrevb.37.3924

Google Scholar

[10] W.Y. Hu, X.L. Shu, B.W. Zhang, Point-defect properties in body-centered cubic transition metals with analytic EAM interatomic potentials, Comput. Mater. Sci. 23 (2002) 175-189.

DOI: 10.1016/s0927-0256(01)00238-5

Google Scholar

[11] J.M. Zhang, G.X. Chen, K.W. Xu, Self-diffusion of BCC transition metals calculated with MAEAM, Physica B 390 (2007) 320-324.

DOI: 10.1016/j.physb.2006.08.032

Google Scholar

[12] Y.N. Wen, J.M. Zhang, Surface energy calculation of the bcc metals by using the MAEAM, Comput. Mater. Sci. 42 (2008) 281-285.

DOI: 10.1016/j.commatsci.2007.07.016

Google Scholar

[13] X.J. Zhang, J.M. Zhang, K.W. Xu, MAEAM simulation of phonons for BCC transition metals, Physica B 391 (2007) 286-291.

DOI: 10.1016/j.physb.2006.10.007

Google Scholar

[14] Y. Xie, J.M. Zhang, Atomistic simulation of phonon dispersion for body-centred cubic alkali metals, Can. J. Phys. 86 (2007) 801-805.

DOI: 10.1139/p07-200

Google Scholar

[15] H.T. Li, X.J. Zhang, K.W. Xu, Stability of BCC transition metals under hydrostatic loading, Mater. Sci. Eng. A 485 (2007) 627-631.

Google Scholar

[16] C.S. Barrett, T.B. Massalski, Structure of Metals, third ed. Pergamon Press, Oxford, 1980, p.629.

Google Scholar

[17] C. Kittle, Introduction to Solid State Physics, Wiley, NewYork, 1976, p.74.

Google Scholar

[18] E.A. Brandes, G.B. Brook, Smithells Metal Reference Book, seventh ed. Oxford, Butterworths, 1992, p.15.

Google Scholar

[19] H.B. Møller, A.R. Makintoosh, Inelastic Scattering of Neutrons, IAEA, Vienna, 1965.

Google Scholar

[20] V.J. Minkiewicz, G. Shirane, R. Nathans, Phonon dispersion relation for iron, Phys. Rev. 162 (1967) 528-531.

DOI: 10.1103/physrev.162.528

Google Scholar