[1]
N. Singh, N.S. Banger, S.P. Singh, Phonon dispersion of bcc transition metals using the temperature-dependent pair potential, Phys. Rev. B 39 (1992) 12915-12917.
DOI: 10.1103/physrevb.39.12915
Google Scholar
[2]
J.C. Upadhyaya, S. S. Sharma, O. P. Kulshrestha, Crystal equilibrium and phonon dispersion in some bcc transition metals, Phys. Rev. B 12 (1975) 2236-2242.
DOI: 10.1103/physrevb.12.2236
Google Scholar
[3]
E.I. Isaev, S.I. Simak, I.A. Abrikosov, R. Ahuja, Y.K. Vekilov, M.I. Katsnelson, A.I. Lichtenstein, B. Johansson, Phonon related properties of transition metals, their carbides, and nitrides: A first-principles study, J. Appl. Phys. 101 (2007) 123519.
DOI: 10.1063/1.2747230
Google Scholar
[4]
G. Simonelli, R. Pasianot, E. J. Savino, Phonon dispersion curves for transition metals within the embedded-atom and embedded-defect methods, Phys. Rev. B 55 (1997) 5570-5573.
DOI: 10.1103/physrevb.55.5570
Google Scholar
[5]
D. Finkenstadt, N. Bernstein, J.L. Feldman, M.J. Mehl, D.A. Papaconstantopoulos, Vibrational modes and diffusion of self-interstitial atoms in body-centered-cubic transition metals: A tight-binding molecular-dynamics study, Phys. Rev. B 74 (2006) 184118.
DOI: 10.1103/physrevb.74.184118
Google Scholar
[6]
B.W. Zhang, Y.F. Ouyang, Theoretical calculation of thermodynamic data for bcc binary alloys with the embedded-atom method, Phys. Rev. B 48 (1993) 3022-3029.
DOI: 10.1103/physrevb.48.3022
Google Scholar
[7]
B.W. Zhang, Y.F. Ouyang, S.Z. Liao, Z.P. Jin, An analytic MEAM model for all BCC transition metals, Physica B 262 (1999) 218-225.
DOI: 10.1016/s0921-4526(98)01156-9
Google Scholar
[8]
M.S. Daw, M.I. Baskes, Semiempirical, quantum mechanical calculation of hydrogen embrittlement in metals, Phys. Rev. Lett. 50 (1983) 1285-1288.
DOI: 10.1103/physrevlett.50.1285
Google Scholar
[9]
R.A. Johnson, Analytic nearest-neighbor model for fcc metals, Phys. Rev. B 37 (1988) 3924-3931.
DOI: 10.1103/physrevb.37.3924
Google Scholar
[10]
W.Y. Hu, X.L. Shu, B.W. Zhang, Point-defect properties in body-centered cubic transition metals with analytic EAM interatomic potentials, Comput. Mater. Sci. 23 (2002) 175-189.
DOI: 10.1016/s0927-0256(01)00238-5
Google Scholar
[11]
J.M. Zhang, G.X. Chen, K.W. Xu, Self-diffusion of BCC transition metals calculated with MAEAM, Physica B 390 (2007) 320-324.
DOI: 10.1016/j.physb.2006.08.032
Google Scholar
[12]
Y.N. Wen, J.M. Zhang, Surface energy calculation of the bcc metals by using the MAEAM, Comput. Mater. Sci. 42 (2008) 281-285.
DOI: 10.1016/j.commatsci.2007.07.016
Google Scholar
[13]
X.J. Zhang, J.M. Zhang, K.W. Xu, MAEAM simulation of phonons for BCC transition metals, Physica B 391 (2007) 286-291.
DOI: 10.1016/j.physb.2006.10.007
Google Scholar
[14]
Y. Xie, J.M. Zhang, Atomistic simulation of phonon dispersion for body-centred cubic alkali metals, Can. J. Phys. 86 (2007) 801-805.
DOI: 10.1139/p07-200
Google Scholar
[15]
H.T. Li, X.J. Zhang, K.W. Xu, Stability of BCC transition metals under hydrostatic loading, Mater. Sci. Eng. A 485 (2007) 627-631.
Google Scholar
[16]
C.S. Barrett, T.B. Massalski, Structure of Metals, third ed. Pergamon Press, Oxford, 1980, p.629.
Google Scholar
[17]
C. Kittle, Introduction to Solid State Physics, Wiley, NewYork, 1976, p.74.
Google Scholar
[18]
E.A. Brandes, G.B. Brook, Smithells Metal Reference Book, seventh ed. Oxford, Butterworths, 1992, p.15.
Google Scholar
[19]
H.B. Møller, A.R. Makintoosh, Inelastic Scattering of Neutrons, IAEA, Vienna, 1965.
Google Scholar
[20]
V.J. Minkiewicz, G. Shirane, R. Nathans, Phonon dispersion relation for iron, Phys. Rev. 162 (1967) 528-531.
DOI: 10.1103/physrev.162.528
Google Scholar