Correlation between Fractal Dimension and Impact Strength for Wood Plastic Composites

Article Preview

Abstract:

Polylactide (PLA)-based wood plastic composites (WPCs) were manufactured by extrusion blending followed by injection molding. The fracture surfaces created from the impact test were recorded with SEM. Fractal analysis has been used to calculate the fractal dimension of the fracture surfaces with four different fractal analysis techniques. Then, the correlation between the fractal dimension of the fracture surfaces and its impact strength of the PLA-based WPCs was investigated by the linear regression. The results showed that there is a positive correlation between the impact strength and the fractal dimension.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

548-551

Citation:

Online since:

November 2011

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] S. Pilla, S. Gong, E. O'Neill, R.M. Rowell, A. M. Krzysik, Polylactide-pine wood flour composites, Polym. Eng. Sci. 48 (2008) 578-587.

DOI: 10.1002/pen.20971

Google Scholar

[2] S. Pilla, S. Gong, E. O'Neill, L. Yang, R.M. Rowell, Polylactide-recycled wood fiber composites, J. Appl. Polym. Sci. 111 (2009) 37-47.

DOI: 10.1002/app.28860

Google Scholar

[3] C. Nyambo, A.K. Mohanty, M. Misra, Polylactide-based renewable green composites from agricultural residues and their hybrids, Biomacromolecules 11 (2010) 1654-1660.

DOI: 10.1021/bm1003114

Google Scholar

[4] M.L. Robertson, K.H. Chang, W.M. Gramlich, M.A. Hillmyer, Toughening of polylactide with polymerizedsoybean oil, Macromolecules 43 (2010) 1807-1814.

DOI: 10.1021/ma9022795

Google Scholar

[5] A. Araujo, A.F. Lemos, J. Ferreira, Rheological, microstructural, and in vitro characterization of hybrid chitosan-polylactic acid/hydroxyapatite composites, J. Biomed. Mater. Res. Part A 88 (2009) 916-922.

DOI: 10.1002/jbm.a.31949

Google Scholar

[6] E. Charkaluk, M. Bigerelle, A. Iost, Fractals and fracture, Eng. Fract. Mech. 61 (1998) 119-139.

DOI: 10.1016/s0013-7944(98)00035-6

Google Scholar

[7] J. de A. Rodrigues, V.C. Pandolfelli, Insights on the fractal-fracture behaviour relationship, Mater. Res. 1 (1998) 47-52.

Google Scholar

[8] B.B. Mandelbrot, D.E. Passoja, A.J. Paullay, Fractal character of fracture surfaces of metals, Nature 308 (1984) 721-722.

DOI: 10.1038/308721a0

Google Scholar

[9] R.L. Smith, J.J. Mecholsky Jr., Application of atomic force microscopy in determining the fractal dimension of the mirror, mist, and hackle region of silica glass, Mater. Charact. 62 (2011) 457-462.

DOI: 10.1016/j.matchar.2011.03.001

Google Scholar

[10] T.J. Hill, A.D. Bona, J.J. Mecholsky Jr., Establishing a protocol for measurements of fractal dimensions in brittle materials, J. Mater. Sci. 36 (2001) 2651-2657.

Google Scholar

[11] T. Ficker, D. Martišek, H.M. Jennings. Roughness of fracture surfaces and compressive strength of hydrated cement pastes, Cement and Concrete Research, 40(2010) 947-955.

DOI: 10.1016/j.cemconres.2010.02.002

Google Scholar

[12] Kh. Ghanbari, M.F. Mousavi, M. Shamsipur, M.S. Rahmanifar, H. Heli, Change in morphology of polyaniline/graphite composite: A fractal dimension approach, Synth. Met. 156 (2006) 911-916.

DOI: 10.1016/j.synthmet.2006.05.006

Google Scholar

[13] B. Venkatesh, D.L. Chen, S.D. Bhole, Three-dimensional fractal analysis of fracture surfaces in a titanium alloy for biomedical applications, Scripta Mater. 59 (2008) 391-394.

DOI: 10.1016/j.scriptamat.2008.04.010

Google Scholar

[14] J.J. Mecholsky Jr., Estimating theoretical strength of brittle materials using fractal geometry, Mater. Lett. 60 (2006) 2486-2488.

DOI: 10.1016/j.matlet.2006.01.054

Google Scholar