A Study on the Laser Induced Damage of Diamond-Like Carbon Film

Article Preview

Abstract:

This paper describes the structure and performances of Diamond-Like Carbon (DLC) films and introduces the film damage testing principle and methods. It also compares the different deposition techniques of DLC film laser induced damage threshold (LIDT), highlighting the influence of external electric field on the DLC film's LIDT. The photoelectron produced by the excitation of laser and the free electron in DLC film will perform a speedy movement, it indirectly decreases some part of the laser-irradiated area energy density, slows down the DLC film's graphitizing process and consequently improves its anti-laser damage ability.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

537-541

Citation:

Online since:

November 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Yang Yuwei,Yang Jian,Gu Hongwei,et al. Bulletin of the chinese ceramic soceity, 27 (2008) 119-126.

Google Scholar

[2] Ren Ni,Ma Zhanji,Gao Xin. Vacuum science and technology, 23 (2003) 176-186.

Google Scholar

[3] Wang Maozhang, Yang Quanhong, Cheng Huiming. Carbon Techniques,2003 (2003) 23-28.

Google Scholar

[4] Xu Ming, Shi Wei, Hou Lei,et al. Chinese Physics Letters, 27 (2010) 0242121-02421213.

Google Scholar

[5] J. Robertson. Materials Science and Engineering,37 (2002) 129-281.

Google Scholar

[6] ISO11254-1. Laser and laser-related equipment-Determination of laser-induced damage threshold of optical surface[S],Part1:1-on-1 test.

DOI: 10.3403/30166851u

Google Scholar

[7] Wu Shenjiang, Shi Wei, et al. Proc. SPIE. 7995 (2010) 799510-799513.

Google Scholar

[8] Nanai L, Fule M, Bali K, et al. Diamond and Related Materials, 11 (2002) 1106-1109.

Google Scholar

[9] Dumitru G, Romano V, Weber H P, et al. Applied Surface Science, 222 (2004) 226-233.

Google Scholar

[10] D.Vouagner, et al. Diamond and Related Materials, 9 (2000) 786–791.

Google Scholar

[11] Lu FX, Y BX, Cheng DG. Thin Solid Films, 21 (1992) 220-225.

Google Scholar

[12] M. Pandey, D. Bhatacharyya, D. S. Patil, K. Ramachandran, N. Venkatramani, A. K. Dua. Journal of Alloys and Compounds, 386 (2005) 296-298.

DOI: 10.1016/j.jallcom.2004.05.067

Google Scholar

[13] M. Veres, M. Koos, I. Pocsik. Diamond and Related Materials, 11 (2002) 1110-1113.

Google Scholar

[14] N.A. Sanchez, C. Rincon, G. Zambrano, H. Galindo, P. Prieto. Thin Solid Films, 373 (2000) 247-250.

Google Scholar

[15] Junqi Xu, Junhong Su, Weiguo Liu, et al. Proc. SPIE, 6722 (2007) 67220A-67220D.

Google Scholar

[16] Junqi Xu, Huiqing Fan, Weiguo Liu et al. Diamond and Related Materials, 17 (2008) 194-198.

Google Scholar

[17] Yuan Lei, Zhao Yuan'an, He Hongbo, Shao Jianda, Fan Zhengxiu. High Power Laser and Particle Beams. 18 (2006) 595-599.

Google Scholar

[18] Eli Yablonovitch, N. Bloemberen.Phys. Rev. Lett., 29 (1972) 907-910.

Google Scholar

[19] L. V. Keldysh. Contemporary Physics , 27 (1986) 395-428.

Google Scholar