Characterization of LiClO4-SiO2 Composite Electrolyte Prepared by Modified Sol-Gel Method

Article Preview

Abstract:

(100-x) LiClO4-xSiO2 (x is mol %) solid composite electrolytes in various compositions were synthesized by modified sol-gel process with sintering at 200 °C. The electrical and structural properties of the composites were investigated. The ionic conductivity of the composites increased with mol % of the dispersoid and then decreased. The highest conductivity was obtained for x = 50 mol % with a value of 4.06 × 10-7 S cm-1 at room temperature. The enhancement in conductivity was more than two orders of magnitude when compared to the host material. The higher conductivity in the SiO2 dispersed system was interpreted in terms of space charge layer and percolation theory. The temperature dependence of conductivity of all samples were Arrhenian in nature and exhibited a maximum of 10-3 S cm-1 at T = 140 °C for x = 50 mol %. XRD spectra showed presence of heterogeneous phase of LiClO4-SiO2 crystalline peaks.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 415-417)

Pages:

442-445

Citation:

Online since:

December 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] A.C. Sequira and A. Hooper: Solid State Batteries (Martinus Nijhoff, Dordrecht) (1985)

Google Scholar

[2] C. Zhenzhu, Zhanqiang, Liu, S. Junkang, H. Fuqiang, Y. Jianhua and W. Yaoming: Solid State Ionics Vol. 179 (2008), p.1776

Google Scholar

[3] B. Kumar (Dayton, OH), Scanlon, Jr.; Lawrence G. (Fairborn, OH), US Patent Publication (Source: USPTO) 6132905 published on 17-Oct-(2000)

Google Scholar

[4] L.W. Hrubesh: J. Non-Cryst. Solids Vol. 225 (1998), p.335.

Google Scholar

[5] D.V. Land, T.M. Harris and D.C. Teeters: J. Non-Cryst. Solids Vol. 283 (2001), p.11

Google Scholar

[6] M.A. Einarsrut: J. Non-Cryst. Solids Vol. 225 (1998), p.1

Google Scholar

[7] K.S. Albert, J.A. Cox and P.J. Kulesza: Electroanalysis Vol. 9 (1997), p.97

Google Scholar

[8] R.C. Agrawal and R. K. Gupta: Journal of Materials Science Vol. 34 (1999), p.1131

Google Scholar

[9] P. Gopalan, S. Bhandari, A.R. Kulkarni and V.R. Palkar: Materials Research Bulletin Vol. 37 (2002), p. (2043)

Google Scholar

[10] J. Maier: Ber.Bunsenes Physik. Cem. Vol. 88 (1984), p.1057

Google Scholar

[11] T. Jow and J.B. Wagner Jr.: J. Electrochem. Soc. Vol. 126 (1979), p. (1963)

Google Scholar

[12] G. Archana and S. Anjan: Material Research Bulletin Vol. 40 (2005), p.67

Google Scholar

[13] G.P. Pandey, R.C. Agrawal, S.A. Hashmi, J. Phys. D: Appl. Physx 43 (2010) 255501 (5pp)].

Google Scholar

[14] M.M.E. Jacob, S. Rajendran, R. Gangadharan and S.R.S. Prabaharan: Solid State Ionics Vol. 86-88 (1996), p.592

DOI: 10.1016/0167-2738(96)00214-7

Google Scholar

[15] A. Bunde: Solid State Ionic Vol. 75 (1995), p.147.

Google Scholar

[16] N.A. Dzulkarnain and N.S. Mohamed: Key Engineering Material Vol. 471-472 (2011), p.274

Google Scholar

[17] M.V. Madhava Rao, S. Narender Reddy and A. Sadananda Chary: Physica B Vol. 362 (2005), p.193

DOI: 10.1016/j.physb.2005.02.011

Google Scholar

[18] J. Haldik: Physics of Electrolytes, Vol. 2 (Ed.), Academic Press, New York (1972)

Google Scholar