[1]
Segal V. M, Reznikov VI, Drobyshevskiy AE and Kopylov VI. Russian Metallurgy, (Engl. Transl. ) 1 (1981) 115.
Google Scholar
[2]
Toth LS., Modelling of strain hardening and microstructural evolution in equal channel angular extrusion, Comp Mater Sci 2005; 32: 568-576.
DOI: 10.1016/j.commatsci.2004.09.007
Google Scholar
[3]
Sue HJ, Li CKY., Control of orientation of lamellar structure in linear low density polyethylene via a novel equal channel angular extrusion process, J Mater Sci Lett 1998; 17: 853-856.
Google Scholar
[4]
Campbell B, Edward G., Equal channel angular extrusion of polyalkenes, Plastics Rubb Comp 1999; 28: 467-75.
DOI: 10.1179/146580199101540033
Google Scholar
[5]
Sue HJ, Dilan H, Li CKY., Simple Shear Plastic Deformation Behavior of Polycarbonate Plate Due to the Equal Channel Angular Extrusion Process. I: Finite Element Methods Modeling, Polym Eng Sci 1999; 39-12: 2505-(2015).
DOI: 10.1002/pen.11638
Google Scholar
[6]
Li CKY, Xia ZY, Sue HJ., Simple shear plastic deformation behavior of polycarbonate plate II. Mechanical property characterization, Polymer 2000; 41: 6285-6293.
DOI: 10.1016/s0032-3861(99)00837-x
Google Scholar
[7]
Xia Z, Sue HJ, Rieker TP., Morphological Evolution of Poly(ethylene terephthalate) during Equal Channel Angular Extrusion Process, Macromolecules 2000; 33: 8746-8755.
DOI: 10.1021/ma001140w
Google Scholar
[8]
Xia Z, Sue HJ, Hsieh AJ., Impact Fracture Behavior of Molecularly Orientated Polycarbonate Sheets, J Appl Polym Sci 2001; 79: 2060-(2066).
DOI: 10.1002/1097-4628(20010314)79:11<2060::aid-app1015>3.0.co;2-e
Google Scholar
[9]
Xia Z, Sue HJ, Hsieh AJ, Huang JWL., Dynamic Mechanical Behavior of Oriented Semicrystalline Polyethylene Terephthalate, J Polym Sci Part B: Polym Phys 2001; 39: 1394-1403.
DOI: 10.1002/polb.1111
Google Scholar
[10]
Creasy TS, Kang YS., Fiber Orientation during Equal Channel Angular Extrusion of Short Fiber Reinforced Thermoplastics , J Therm Comp 2004; 17: 205-227.
DOI: 10.1177/0892705704035403
Google Scholar
[11]
Xia Z, Hartwig T, Sue HJ., Mechanical Behavior of Bulk Poly(ethylene terephthalate) Subjected to Simple Shear, J Macromol Sci Part B 2004; 43: 385-403.
DOI: 10.1081/mb-120029776
Google Scholar
[12]
Creasy TS, Kang YS., Fibre fracture during equal-channel angular extrusion of short fibre-reinforced thermoplastics, J Mater Process Technol 2005; 160: 90-8.
DOI: 10.1016/j.jmatprotec.2004.04.369
Google Scholar
[13]
Weon JI, Creasy TS, Sue HJ, Hsieh AJ., Mechanical Behavior of Polymethylmethacrylate with Molecules Oriented via Extreme Simple Shear, Polym Eng Sci 2005; 45: 314-324.
DOI: 10.1002/pen.20269
Google Scholar
[14]
Weon JI, Sue HJ., Effects of Clay Orientation and Aspect Ratio on Mechanical Behavior of Nylon-6 Nanocomposites, Polymer 2005; 46: 6325-6334.
DOI: 10.1016/j.polymer.2005.05.094
Google Scholar
[15]
Phillips A, Zhu PW, Edward G., Simple Shear Deformation of Polypropylene via the Equal Channel Angular Extrusion Process, Macromolecules 2006; 39: 5796-5803.
DOI: 10.1021/ma0607618
Google Scholar
[16]
Wang ZG, Xia Z, Yu ZQ, Chen EQ, Sue HJ, Han CC, et al., Lamellar Formation and Relaxation in Simple Sheared PET by SAXS, Macromolecules 2006; 39: 2930-2939.
DOI: 10.1021/ma051928k
Google Scholar
[17]
Al-Goussous S, Wu X, Yuan Q, Xia K., BACK PRESSURE EQUAL CHANNEL ANGULAR CONSOLIDATION OF NYLON 12, Mater Forum 2007; 31: 36-39.
Google Scholar
[18]
Ma J, Simon GP, Edward GH., The Effect of Shear Deformation on Nylon-6 and Two Types of Nylon-6/Clay Nanocomposite, Macromolecules 2008 ; 41 : 409-20.
DOI: 10.1021/ma071580o
Google Scholar
[19]
Zaïri F, Aour B, Gloaguen JM, Naït-Abdelaziz M, Lefebvre JM., Numerical modelling of elastic–viscoplastic equal channel angular extrusion process of a polymer, Comp Mater Sci 2006; 38: 202-216.
DOI: 10.1016/j.commatsci.2006.02.008
Google Scholar
[20]
Zaïri F, Aour B, Gloaguen JM, Naït-Abdelaziz M, Lefebvre JM., Influence of the initial yield strain magnitude on the materials flow in equal-channel angular extrusion process, Scripta Mater 2007; 56: 105-108.
DOI: 10.1016/j.scriptamat.2006.09.032
Google Scholar
[21]
Aour B, Zaïri F, Naït-Abdelaziz M, Gloaguen JM, Rahmani O, Lefebvre JM., A computational study of die geometry and processing conditions effects on equal channel angular extrusion of a polymer, Int J Mech Sci 2008; 50: 589-602.
DOI: 10.1016/j.ijmecsci.2007.07.012
Google Scholar
[22]
Zaïri F, Aour B, Gloaguen JM, Naït-Abdelaziz M, Lefebvre JM., Steady plastic flow of a polymer during equal channel angular extrusion process: experiments and numerical modeling, Polym Eng Sci 2008; 48: 1015-1021.
DOI: 10.1002/pen.21042
Google Scholar
[23]
Iwahashi Y, Wang J, Horita Z, Nemoto M, Langdon TG., Principle of ECA pressing for the processing of ultra-fine grained materials , Scripta Mater 1996; 35: 143-146.
DOI: 10.1016/1359-6462(96)00107-8
Google Scholar
[24]
Osawa S, Mukai H, Ogawa T, Porter RS., The application of multiple regression analysis to the property–structure–processing relationship on forging of isotactic polypropylene, J Appl Polym Sci 1998; 68: 1297-1302.
DOI: 10.1002/(sici)1097-4628(19980523)68:8<1297::aid-app11>3.0.co;2-x
Google Scholar
[25]
Krjutchkov AN, Dorfman IY, Prut EV, Enikolopyan NS., Solid state extrusion of semicrystalline polymers, Polym Compos 1986; 7: 413-420.
DOI: 10.1002/pc.750070603
Google Scholar
[26]
Kanamoto T, Zachariades AE, Porter RS., Solid-state coextrusion of high-density polyethylene. I. Effects of geometric factors, Polym J 1979; 11: 307-313.
DOI: 10.1002/pol.1979.180171212
Google Scholar
[27]
Saraf RF, Porter RS., The Mechanics of Equibiaxial Hydrostatic Deformation in Solid State: Isotactic Polypropylene, J Rheology 1987; 31: 59-94.
DOI: 10.1122/1.549950
Google Scholar
[28]
Graessley WW, Glasscock SD, Crawley RL., Die swell in molten polymers, Trans Soc Rheology 1970; 14: 519-44.
DOI: 10.1122/1.549177
Google Scholar
[29]
Benelhadjsaid C, Porter RS., Crystalline-state extrusion of low density polyethylenes, J Appl Polym Sci 1985; 30: 741-753.
DOI: 10.1002/app.1985.070300222
Google Scholar
[30]
G'Sell C, Dahoun A, Favier V, Hiver JM, Philippe MJ, Canova GR., Microstructure Transformation and Stress-Strain Behavior of Isotactic Polypropylene Under Large Plastic Deformation, Polym Eng Sci 1997; 37: 1702-1711.
DOI: 10.1002/pen.11818
Google Scholar
[31]
Hibi S, Niwa T, Wang C, Kyu T, Lin J-S., Crystal Orientation and Twinning of Cold-Rolled Ultrahigh Molecular Weight Polypropylene, Polym Eng Sci 1995; 35: 902-911.
DOI: 10.1002/pen.760351105
Google Scholar
[32]
Bartczak Z, Martuscelli E., Orientation and properties of sequentially drawn films of an isotactic polypropylene/ hydrogenated oligocyclopentadiene blend, Polymer 1997; 38: 4139-4149.
DOI: 10.1016/s0032-3861(96)00996-2
Google Scholar
[33]
Staniek E, Seguela R, Escaig B, Francois P., Plastic behavior of monoclinic polypropylene under hydrostatic pressure in compressive testing, J Appl Polym Sci 1999; 72: 1241-1247.
DOI: 10.1002/(sici)1097-4628(19990606)72:10<1241::aid-app2>3.0.co;2-w
Google Scholar
[34]
Kiho H, Peterlin A, Geil PH., Polymer Deformation. VI. Twinning and Phase Transformation of Polyethylene Single Crystals as a Function of Stretching Direction, J Appl Phys 1964; 35: 1599-1605.
DOI: 10.1063/1.1713673
Google Scholar
[35]
Allan P, Crellin EB, Bevis M., Stress-induced twinning and phase transformations in polyethylene single crystals , Philos Mag 1973; 27: 127-45.
DOI: 10.1080/14786437308228920
Google Scholar