The Milling Process Monitoring Using 3D Envelope Method

Article Preview

Abstract:

This paper proposes a method to vibration analysis in order to on-line monitoring of milling process quality. Adapting envelope analysis to characterize the milling tool materials is an important contribution to the qualitative and quantitative characterization of milling capacity and a step by modeling the three-dimensional cutting process. An experimental protocol was designed and developed for the acquisition, processing and analyzing three-dimensional signal. The vibration envelope analysis is proposed to detect the cutting capacity of the tool with the optimization application of cutting parameters. The research is focused on Hilbert transform optimization to evaluate the dynamic behavior of the machine/ tool/workpiece.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

77-88

Citation:

Online since:

December 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] X. Li, Flute breakage detection during end milling using Hilbert–Huang transform and smoothed nonlinear energy operator, International Journal of Machine Tools & Manufacture, 47, 2007, p.1011–1020.

DOI: 10.1016/j.ijmachtools.2006.06.016

Google Scholar

[2] Dragos¸ A. Axinte, Nabil Gindy, Kate Fox, Iker Unanue, Process monitoring to assist the workpiece surface quality in machining, International Journal of Machine Tools & Manufacture, 44, 2004, p.1091–1108.

DOI: 10.1016/j.ijmachtools.2004.02.020

Google Scholar

[3] C. F. Bisu, P. Darnis, A. Gérard, J-Y Knevez, Displacements analysis of self-excited vibrations in turning, International Journal of Advanced Manufacturing Technology, 44, (1-2), 2009, pp.1-16, DOI : 10. 1007/s00170-008-1815-8.

DOI: 10.1007/s00170-008-1815-8

Google Scholar

[4] C. F. Bisu, A. Gérard, J-Y Knevez, R. Laheurte, O. Cahuc, Self-excited vibrations in turning : Forces torsor analysis, International Journal of Advanced Manufacturing Technology,. 44, (5-6), 2009, pp.447-462, DOI : 10. 1007/s00170-08-1850-5.

DOI: 10.1007/s00170-008-1850-5

Google Scholar

[5] B. Kilundu, X. Chiementin, J. Duez, D. Mba, Cylostationary of acoustic emission (AE) for monitoring bearing defects, Mechanical systems and signal Processing, 25, (6), 2011, pp.2061-2072, DOI: 10. 1016/j. ymssp. 2011. 01. 020.

DOI: 10.1016/j.ymssp.2011.01.020

Google Scholar

[6] O. Cahuc, Ph. Darnis, A. Gérard, J-L. Battaglia, Experimental and analytical balance sheet in turning applications, International Journal of Advanced Manufacturing Technology, 18, 2001, pp.648-656.

DOI: 10.1007/s001700170025

Google Scholar

[7] M. Lalanne, G. Ferraris, Rotordynamics prediction in Engineering, Wiley, (2001).

Google Scholar

[8] Dron, J-P., Bolaers, F., Rasolofondraibe, L., Improvement of the sensibility of scalars indicators thanks to de-noising method by spectacle subtraction, Application to the detection ball bearing defects,. Journal of Sound Vibration, 270, (4), 2004, pp.61-73.

DOI: 10.1016/s0022-460x(03)00483-8

Google Scholar

[9] Mobley, R-K., Root Cause Failure Analysis, (Plant Engineering Maintenance Series), Butterworth-Heineman, (1999).

Google Scholar

[10] C. F. Bisu, M. Zapciu, A. Gérard, V. Vijelea, M. Anica, New approach of envelope dynamic analysis for milling process, Eighth International Conference on High Speed Machining, Metz, France, Dec. 8-10, (2010).

DOI: 10.1007/s00170-011-3814-4

Google Scholar

[11] Arnaud, L. and Gonzalo, O. and Seguy, S. and Jauregi, H. and Peigné, G., Simulation of low rigidity part machining applied to thin-walled structures, International Journal of Advanced Manufacturing Technology, 54, 2011, pp.479-488.

DOI: 10.1007/s00170-010-2976-9

Google Scholar

[12] Zaghbany, I. and Songmene, V., Estimation of machine-tool dynamic parameters during machining operation through operational modal analysis, International Journal of Machine Tools & Manufacture, 49, (12-13), 2009, p.947–957.

DOI: 10.1016/j.ijmachtools.2009.06.010

Google Scholar

[13] Al-Dossary, S, Hamzah, R.I.R., Mba, D., Observations of changes in acoustic emission waveform for varying seeded defect sizes in a rolling element bearing, Journal of Applied Acoustics 70, (1), 2009, p.58–81.

DOI: 10.1016/j.apacoust.2008.01.005

Google Scholar

[14] R. Yan, R. X. Gao, Multi-scale enveloping spectrogram for vibration analysis in bearing defect diagnosis, Tribology International 42, 2009, p.293–302.

DOI: 10.1016/j.triboint.2008.06.013

Google Scholar

[15] T. Kalvoda; Y.R. Hwang; A cutter tool monitoring in machining process using Hilbert-Huang transform, International Journal of Machine Tools and Manufacture, 50, (5), 2010, pp.495-501.

DOI: 10.1016/j.ijmachtools.2010.01.006

Google Scholar

[16] V. Gagnol, T-P. Le, P. Ray, Modal identification of spindle-tool unit in high-speed machining, Mechanical Systems and Signal Processing, 25, (11), 2011, pp.2388-2398, doi: 10. 1016/j. ymssp. 2011. 02. 019.

DOI: 10.1016/j.ymssp.2011.02.019

Google Scholar

[17] X. Wang, Numerical Implementation of the Hilbert Transform, Thesis, University of Saskatchewan, Saskatoon, (2006).

Google Scholar

[18] Mba, D. and Rao, R-B-K-N., Development of acoustic emission technology for condition monitoring and diagnosis of rotating machines: bearings, pumps, gearboxes, engines, and rotating structures, International Journal of Machine Tools & Manufacture, 45, 2005, pp.1295-1300.

DOI: 10.1177/0583102405059054

Google Scholar

[19] F. Girardin, Etude de l'usinage de matériaux performants et surveillance de l'usinage, Thesis Institut National de Sciences Appliquées de Lyon, (2010).

Google Scholar

[20] X. Chiementin, Localisation et quantification des sources vibratoires dans le cadre d'une maintenance préventive conditionnelle en vue de stabiliser le diagnostic et le suivi de l'endommagement des composants mécaniques tournants : application aux roulements à billes, Thesis Université de Reims Champagne Ardenne, (2007).

DOI: 10.30875/9789287073624c008

Google Scholar

[21] C.F. Bisu, P. Darnis, A. Gérard, J-Y K'nevez, Displacements analysis of self-excited vibrations in turning, International Journal of Advanced Manufacturing Technology, Springer London, 44, (1-2), 2009, pp.1-16.

DOI: 10.1007/s00170-008-1815-8

Google Scholar

[22] O. Cahuc, J-Y. K'nevez, A. Gérard, P. Darnis, G. Albert, C. F. Bisu, C. Gérard, Self-excited vibrations in turning: cutting moment analysis, International Journal of Advanced Manufacturing Technology, 47, (1-4), 2010, pp.217-225.

DOI: 10.1007/s00170-009-2189-2

Google Scholar