Reliability Based Design Optimisation of Hydroformed Welded Tubes

Article Preview

Abstract:

This paper presents an experimental/numerical methodology which aims to improve 3D welded tube considering their anisotropic effect, geometrical singularities found in the welded joint, and heat affected zone behaviour by hydroforming process. This process contributes to reduce the number of welding and assembly operations needed to generate complex structures, while improving the weight saving and quality of finished parts. In spite of the advances in the performance of this manufacturing technology, some problems are linked to particularities of certain raw materials and additional studies must be developed, like in the case of welded tubes. The experimental study is dedicated to the identification of stress-strain flow of the base metal and the heat-affected zone from the global measure of tube displacement, thickness evolution and internal pressure expansion. Nanoindentation test is adapted to investigate the heat affected zone mechanical behaviour. Workpiece behaviour's models used to simulate the expansion tests, made it possible to highlight the combined effects of the inhomogeneous behaviour of basic material and heat affected zone, as well as the geometrical singularities found in the welded tubes. From the simulations carried out, it is clear the influence of the plastic flow behaviour of the welded tube in the final results (thickness distribution, stress instability, tube circularity, critical thinning and rupture).

You might also be interested in these eBooks

Info:

Periodical:

Pages:

31-52

Citation:

Online since:

December 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] F. Dohmann and C. Hertl: Journal of Materials Processing Technology, Vol. 71 (1997), pp.174-186.

Google Scholar

[2] Y. Jae-Bong, J. Byung and O. Soo: Journal of Materials Processing Technology, Vol. 111 (2001), pp.175-181.

Google Scholar

[3] Y.S. Shin, H.Y. Kim, B.H. Jeon B.H., S.I. Oh: J. Mater. Process. Techno. Vol. 130-131 (2002), pp.121-127.

Google Scholar

[4] R.M. Natal Jorge, Roque A.P., Valente R.A.F., Parente M.P.L. and Fernandes A.A.: J. Mater. Process. Techno. Vol. 184 (2007), pp.363-371.

Google Scholar

[5] G. Liu, S. Yuan and G. Chu: J. Mater. Process. Techno. Vol. 187-188 (2007), pp.287-291.

Google Scholar

[6] J.P. Abrantes, A. Szabo-Ponce and G.F. Batalha: J. Mater. Process. Techno. Vol. 164-165 (2005), pp.1140-1147.

Google Scholar

[7] L. Lang, S. Yuan, X. Wang, Z.R. Wang, Z. Fu, J. Danckert and K.B. Nielsen: J. Mater. Process. Techno. Vol. 146 (2004), pp.377-388.

Google Scholar

[8] M. Ayadi, A. Cherouat, N. Mezghani and M.A. Rezgui: in 6th International Forum on Advanced Material Science and Technology, Hong Kong June 12-14 (2008).

Google Scholar

[9] G. Liu, S. Yuan and G. Chu: J. Mater. Process. Techno. Vol. 187-188 (2007), pp.287-291.

Google Scholar

[10] N. Mezghani, H. Salhi, M. Ayadi and A. Cherouat: International Review of Mechanical Engineering (2009), in press.

Google Scholar

[11] M. Imaninejad, G. Subhash and A. Loukus: I. J. Mech. Science Vol. 46 (2004), pp.1195-1212.

Google Scholar

[12] P. Ray and B.J. Mac Donald: Finite element in Analysis and Design, Vol. 41 (2004), pp.173-192.

Google Scholar

[13] G. Neffussi and A. Combescure: I. J. Mech. Science Vol. 44 (2002), pp.899-914.

Google Scholar

[14] K.I. Johnson, B.N. Nguyen, R.W. Davies, G.J. Grant and M.A. Khaleel: I. J. Plasticity 20 (2004), pp.1111-1137.

Google Scholar

[15] S. Yuan, W. Yuan and X. Wang: J. Mater. Process. Techno. Vol. 177 (2006), pp.668-671.

Google Scholar

[16] M. Koç: J. Mater. Process. Techno. Vol. 133 (2003), pp.276-281.

Google Scholar

[17] K.J. Fann and P.Y. Hsiao: J. Mater. Process. Techno. Vol. 140 (2003), pp.520-524.

Google Scholar

[18] K. Manabe, M. Suetake, H. Koyama and M. Yang: I. J. Machine Tools & Manuf. Vol. 46 (2006), pp.1207-1211.

Google Scholar

[19] T. Hama, T. Ohkubo, K. Kurisu, H. Fujimoto and H. Takuda: J. Mater. Process. Techno. Vol. 177 (2006), pp.676-679.

Google Scholar

[20] R.M. Natal Jorge, A.P. Roque, R.A.F. Valente, M.P.L. Parente and A.A. Fernandes: J. Mater. Process. Techno. Vol. 184 (2007), pp.363-371.

Google Scholar

[21] A. Cherouat, K. Saanouni and Y. Hammi: I. J. Mech. Sci. Vol. 44 (2002), pp.2427-2446.

Google Scholar

[22] M. Imaninejad, G. Subhash and A. Loukus: J. Mater. Process. Techno. Vol. 147 (2004), pp.247-254.

Google Scholar

[23] P. Bortot, E. Ceretti and C. Giardini: J. Mater. Process. Techno. Vol. 203 (2008), pp.381-388.

Google Scholar

[24] C. Levaillant and J.L. Chenot: J. Mater. Process. Techno. Vol. 32 (1992), pp.383-397.

Google Scholar

[25] P. Hora, L. Tong and J.A. Reissner: in Proceedings of Numisheet'96, Wagonner, et al. Eds. (1996), pp.252-256.

Google Scholar

[26] Liang Xue: Engineering Fracture Mechanics, Vol. 76 (2009), pp.419-438.

Google Scholar

[27] D. Youn and D. Byeng: Computers and structures, Vol. 82 (2003), pp.241-256.

Google Scholar

[28] I. Enevoldsen and J.D. Sorensen: Struct. Safety Vol. 15 (1994), p.169–196.

Google Scholar

[29] Bing, Li, et al.: Journal of Pressure Vessel Technology, Vol. 128 (2006), p.402–407.

Google Scholar

[30] M. Kleiber et al.: International Journal for Numerical Methods in Engineering, Vol. 60 (2004), pp.51-67.

Google Scholar

[31] L. Bing et al.: Journal of Pressure Vessel Technology, Vol. 129 (2007), pp.242-247.

Google Scholar

[32] M. Koç et al.: International Journal of Machine Tools and Manufacture, Vol. 42 (2002), pp.123-138.

Google Scholar

[33] W. Donglai et al.: Computational Materials Science, Vol. 42 (2008), pp.228-233.

Google Scholar

[34] T. Jansson et al.: Journal of Materials Processing Technology, vol. 202 (2007), pp.255-268.

Google Scholar