Determination of Pd(II) in Street Dust and Water Samples by FAAS after Preconcentration with Dimethylglyoxime-Anchored Organobentonite

Article Preview

Abstract:

A preconcentration method based on the adsorption of palladium-dimethylglyoxime -anchored organobentonite (DMG-bentonite) for the determination of palladium at trace levels by flame atomic absorption spectrometry (AAS) has been developed. The optimum experimental parameters for the adsorption and preconcentration of the palladium, such as pH value of medium, contact time, eluent and coexisting ion, have been investigated. The results showed that the palladium ion could be quantitatively retained by the DMG-bentonite in the pH range of 3–5 using citric acid/citrate buffer, the adsorption time was 20 min, and capability of adsorption was 8.73 mg•g-1. The palladium ion adsorbed on the DMG-bentonite could be completely eluated by using 1 mol•L-1 HCl. The detection limits of this method for palladium was 1.02µg•L-1 with an enrichment factor of 60. The method has been applied to the determination of trace amounts of palladium ion in street dust and environmental water with satisfactory results.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 433-440)

Pages:

24-28

Citation:

Online since:

January 2012

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Serife Tokalıo˘glu, Tülay Oymak, Senol Kartal Analytica Chimica Acta vol. 511, 2004, 255–260.

Google Scholar

[2] F. Zereini, F. Alt (Eds. ), Palladium Emission in the Environment, Springer-Verlag, Berlin Heidelberg, (2006).

Google Scholar

[3] A. Limbeck, J. Rendl, H. Puxbaum, J. Anal. At. Spectrom. vol. 18 , 2003, 161.

Google Scholar

[4] K. Boch, M. Schuster, G. Risse, M. Schwarzer, Anal. Chim. Acta, vol. 459, 2002, 257.

Google Scholar

[5] P. Kovacheva, R. Djingova, Anal. Chim. Acta, vol. 464, 2002, 7.

Google Scholar

[6] G. -H. Lee, K. -S. Chung, Anal. Sci. vol. 7, 1991, 1339.

Google Scholar

[7] G.H. Faye, W.R. Inman, Anal. Chem. vol. 35, 1963, 985.

Google Scholar

[8] J.T. Pyle, W.D. Jacobs, Anal. Chem. vol. 36 , 1964, 1796.

Google Scholar

[9] M.B. Gómez, M.M. Gómez, M.A. Palacios, J. Anal. At. Spectrom. vol. 18 , 2003, 80.

Google Scholar

[10] A. Tunçeli, A.R. Türker, Anal. Sci. vol. 16, 2000, 81.

Google Scholar

[11] I.A. Kovalev, L.V. Bogacheva, G.I. Tysin, A.A. Formanovsky, Y.A. Zolotov, Talanta, vol. 52, 2000, 39.

Google Scholar

[12] B. Godlewska-Z˙ yłkiewicz, Microchim. Acta, vol. 147, 2004, 189.

Google Scholar

[13] B. Godlewska-Z˙ yłkiewicz, B. Les'niewska, U. Ga˛siewska, A. Hulanicki, Anal. Lett. vol. 33, 2000, 2805.

Google Scholar

[14] S. Doker, S. Malci, M. Dogan, B. Salih, Anal. Chim. Acta, vol. 553, 2005, 73.

Google Scholar

[15] E. Birinci, M. Gulfen, A.O. Aydin, Hydrometallurgy, vol. 95, 2009, 15.

Google Scholar

[16] S. Tokalioglu, V. Yilmaz, S. Kartal, A. Delibas, C. Soykan, Microchim. Acta, vol. 165, 2009, 347.

Google Scholar

[17] H. Zheng, D. Zhang, W.Y. Wang, Y.Q. Fan, J. Li, H.P. Han, Microchim. Acta, vol. 157, 2007, 7.

Google Scholar

[18] ZHANG D.; SONG En-jun; ZHANG Li-li; REN Guang-jun, China Environ. Sci. vol. 29(7) 2009, 713.

Google Scholar