[1]
Robert Minichmayr, Martin Riedler, Gerhard Winter, Heinz Leitner, Wilfried Eichlseder. Thermo-mechanical fatigue life assessment of aluminium components using the damage rate model of Sehitoglu. International Journal of Fatigue 2008; 30: 298~304.
DOI: 10.1016/j.ijfatigue.2007.01.054
Google Scholar
[2]
Christ H-J, Jung A, Maier HJ, Teteruk R. Thermo-mechanical fatigue-damage mechanisms and mechanism-based life prediction methods. Sadhana 2003; 28: 147~65.
DOI: 10.1007/bf02717131
Google Scholar
[3]
Cai CPK, Ye M, Yu J. Recent developments in the thermo-mechanical fatigue law, life prediction of superalloys. J. Oper Manage 1999; 51(4).
Google Scholar
[4]
Coffin LF. A study of the effects of cyclic thermal stresses in a ductile metal. Trans ASME 1954; 76: 931.
DOI: 10.1115/1.4015021
Google Scholar
[5]
Ostergren WJ. A damage function and associated failure equations for predicting hold time and frequency effects in elevated temperature, low cycle fatigue. J. Test Eval. 1976; 4: 327~39.
DOI: 10.1520/jte10520j
Google Scholar
[6]
Manson SS. The challenge to unify treatment of high temperature fatigue a partisan proposal based on strain range partitioning, fatigue at elevated temperature. In: Carden AE, Mc Evily AJ, Wells CH, editors. ASTM STP 520. Philadelphia: American Society for Testing and Materials; 1973. p.44.
DOI: 10.1520/stp38885s
Google Scholar
[7]
Dang Van K. Macro-micro approaches in high cycle multi-axial fatigue. In: McDowell DL, Ellis R, editors. Advances in multiaxial fatigue. Philadephia, PA: American Society for Testing and Materials; 1993. p.120–30.
DOI: 10.1520/stp24799s
Google Scholar
[8]
Fatemi A, Socie DF. A critical plane approach to multiaxial fatigue damage including out-of-phase loading. Fatigue Fract. Eng. Mater. Struct. 1988; 11(3): 149–65.
DOI: 10.1111/j.1460-2695.1988.tb01169.x
Google Scholar
[9]
Skelton RP. Energy criterion for high temperature low cycle fatigue. Mat. Sci. Technol. 1991; 7: 427-9.
Google Scholar
[10]
Ellyin F, Golos K, Xia Z. In phase and out-of phase multiaxial fatigue a general fatigue theory an dits application to out-of-phase cyclic loading, Trans ASME. J Eng Mater Technol 1991; vol. 113: 112–8.
DOI: 10.1016/0142-1123(91)90576-k
Google Scholar
[11]
Constantinescu A, Charkaluk E, Lederer G, Verger L. A computational approach to thermo-mechanical fatigue. Int. J. Fatigue 2004; 26(8): 805–18.
Google Scholar
[12]
You B-R, Lee S-B. A critical review on multiaxial fatigue assessments of metals. Int. J. Fatigue 1996; 18(4): 235–44.
DOI: 10.1016/0142-1123(96)00002-3
Google Scholar
[13]
You B-R, Lee S-B. A critical review on multiaxial fatigue assessments of metals. Int. J. Fatigue 1996; 18(4): 235–44.
DOI: 10.1016/0142-1123(96)00002-3
Google Scholar
[14]
Manson SS. Behavior of materials under conditions of thermal stress. Heat transfer symposium, Ann Arbor (MI): University of Michigan Engineering Research Institute; 1953. p.9–75.
Google Scholar
[15]
Coffin Jr LF. A study of the effects of cyclic thermal stresses on a ductile metal. Trans Am Soc Mech Eng 1954; 76: 931–50. New York (NY).
DOI: 10.1115/1.4015021
Google Scholar
[16]
Yokobori T et. al. Low cycle fatigue of thin-walled hollow-cylinder specimens of mild steel in uniaxial and torsional tests at constant strain amplitude. Int. J. Fracture mechanics, 1965, 1: 3.
DOI: 10.1007/bf00184149
Google Scholar
[17]
Sines G., Ohgi G. Fatigue criteria under combined stresses or strains. Trans, ASEM. J. Engng. Mater Tech, 1981, 103: 82~90.
DOI: 10.1115/1.3224995
Google Scholar
[18]
Liberting G Z. Short-life fatigue under combined stress. J. strain analysis, 1967, 2: 91.
Google Scholar
[19]
Zamrik S Y, Goto T. The use of octahedral shear strain in biaxial low cycle fatigue. Material Technology on Inter-American Approach, ASEM, New York, 1968: 551.
Google Scholar
[20]
Pasco K J, Devilliers J W R. Low cycle fatigue of steels under biaxial straining. J. strain analysis, 1967, 2: 117.
Google Scholar
[21]
Lefebvre D F. Hydrostatic effect on the life prediction in biaxial low-cycle fatigue. Proc. 2nd Int. Conf on Multiaxial Fatigue, Sheffield, UK, (1985).
Google Scholar
[22]
Zamrik S Y, Frismuth R E. The effect on out of phase biaxial strain cycling on low-cycle fatigue. Exp, Mech. SESA, 1973, 13: 204.
DOI: 10.1007/bf02322654
Google Scholar
[23]
Brown MW, Miller KJ. Two decades of progress in the assessment of multiaxial low cycle fatigue. Low cycle fatigue and life prediction. ASTM STP, 770 1982, 1982. 482~99.
DOI: 10.1520/stp32442s
Google Scholar
[24]
Halford GR, Manson S. Life prediction of thermal-mechanical fatigue using strain range partitioning. Therm Fatigue Mater Components, ASTM STP 1976; 612: 239~54.
DOI: 10.1520/stp27895s
Google Scholar
[25]
Halford GJ. The energy required for fatigue. J Mater 1966; 1(1): 3~18.
Google Scholar
[26]
Ellyin F, Kujawski D. Plastic strain energy in fatigue failure. ASME J Pressure Vessel Technol 1984; 106(4): 342~7.
DOI: 10.1115/1.3264362
Google Scholar
[27]
Golos K, Ellyin FA. A total strain energy density theory for cumulative fatigue damage. ASME J Pressure Vessel Technol 1988; 110(1): 36~41.
DOI: 10.1115/1.3265565
Google Scholar
[28]
Lee K-O, Hong S-G, Lee S-B. A new energy-based fatigue damage parameter in life prediction of high-temperature structural materials. Mater Sci Eng A 2008; 496: 471~7.
DOI: 10.1016/j.msea.2008.07.035
Google Scholar
[29]
Farahani AV. A new energy critical plane parameter for fatigue life assessment of various metallic materials subjected to in-phase and out-of-phase multiaxial fatigue loading conditions. Int J Fatigue 2000; 22: 295–305.
DOI: 10.1016/s0142-1123(00)00002-5
Google Scholar
[30]
Duyi Y, Zhenlin W. A new approach to low-cycle fatigue damage based on exhaustion of static toughness and dissipation of cyclic plastic strain energy during fatigue. Int J Fatigue 2001; 23: 679–87.
DOI: 10.1016/s0142-1123(01)00027-5
Google Scholar
[31]
J. Dziubinskyi, Fatigue failure criterion based on plastic strain energy density applied to welds, Int. J. Fatigue, 1991, 13 (3), 223~226.
DOI: 10.1016/0142-1123(91)90245-t
Google Scholar
[32]
A. Varvani-Farahani, A new energy-critical plane parameter for fatigue life assessment of various metallic phase and out-of-phase multiaxial fatigue loading conditions, International Journal of Fatigue 22, 2000, 295~305.
DOI: 10.1016/s0142-1123(00)00002-5
Google Scholar
[33]
Skelton RP. Energy criteria for high temperature low cycle fatigue. Mater Sci Tech 1991; 7(1991): 427–39.
Google Scholar