Dunford-Taylor Integral and the Isotropic Tensor Valued Functions Having the Commutative Property with their Tensor Argument

Article Preview

Abstract:

Isotropic tensor valued functions of tensor arguments play an important role in the formulation of the equations governing the behavior of solid materials in the field of continuum mechanics. When the tensor argument is non-symmetric, the complexity and the difficulty in dealing with the tensor functions are high. In this work, the issue of expressing an isotropic tensor valued tensor function of a non-symmetric tensor argument is attention by utilizing the Dunford-Taylor integral. An important subclass of the isotropic tensor functions is considered with the commutative property.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 433-440)

Pages:

3308-3314

Citation:

Online since:

January 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] M. Asghari: Inter. J. of Sol. and Struc. s, Vol. 47(5) (2010), p.611.

Google Scholar

[2] D.E. Carlson, A. Hoger: Quar. of App. Math., Vol. 44 (1986), p.409.

Google Scholar

[3] D.E. Carlson, A. Hoger: J. of Elasticity, Vol. 16(2) (1986), p.221.

Google Scholar

[4] M. Chi-Sing, Z. -H. Guo: Inter. J. of Sol. and Struc., Vol. 30(20) (1993), p.2819.

Google Scholar

[5] R. Ogden: Non-linear elastic deformation (Ellis Horwood, Chichester 1984).

Google Scholar

[6] A. Hoger: Inter. J. of Sol. and Struc., Vol. 22(9) (1986), p.1019.

Google Scholar

[7] G.F. Smith: Inter. J. of Eng. Sci., Vol. 9(10) (1971), p.899.

Google Scholar

[8] B. Balendran, S. Nemat-Nasser: Quar. of App. Math., Vol. 54(3) (1996), p.583.

Google Scholar

[9] M. Itskov, N. Aksel: Inter. J. of Sol. and Struc., Vol. 39 (2002), p.5963.

Google Scholar

[10] J. Lu: Inter. J. of Sol. and Struc., Vol. 41(2) (2004), p.337.

Google Scholar

[11] M. Itskov: Comp. Meth. in App. Mech. and Eng., Vol 192(3-36) (2003), p.3985.

Google Scholar

[12] M. Itskov: The Royal Soci., Vol. 459 (2003), p.1449.

Google Scholar

[13] Z. -Q. Wang, G. -S. Dui: Inter. J. of Sol. and Struc., Vol. 44(16) (2007), p.5369.

Google Scholar

[14] T. Kato: Perturbation Theory for Linear Operators (Springer, New York 1966).

Google Scholar

[15] G. Dui, Z. Wang, M. Jin: Phy Mech. and Astro., Vol. 49(3) (2006), p.321.

Google Scholar