Some Influencing Factors on Photocatalytic Activity of TiO2 Film Prepared Using Sol-Gel Method

Article Preview

Abstract:

Subscript text TiO2 film was deposited on glass substrate by a sol-gel process. The influences of the SiO2 layer, distance between lamp and solution, and air flow rate were investigated. Methyl orange can be hardly degraded under UV light exposure alone. The adsorption rate of methyl orange on TiO2 film is negative after 25 min of stirring. Although distance between the lamp and the solution varies from 5.5 cm to 7.5 cm, the degradation rates decline slightly. There is nearly no influence of air flow rate on the entire degradation ability of the photocatalyst. SiO2 film coated on microscope glass slide has no photocatalytic activity under UV irradiation. In prior to deposit TiO2 film onto the surface of the glass substrate, a SiO2 thin layer is coated. The results indicate that the TiO2 film with SiO2 layer has much better photocatalytic activity that the film without SiO2 layer.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 433-440)

Pages:

362-366

Citation:

Online since:

January 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] S. Fukahori, H. Ichiura, T. Kitaoka, H. Tanaka, Photocatalytic decomposition of bisphenol A in water using composite TiO2-zeolite sheets prepared by a papermaking technique , Environ. Sci. Technol., vol. 37, pp.1048-1051, (2003).

DOI: 10.1021/es0260115

Google Scholar

[2] S. Horikoshi, A. Saitou, H. Hidaka, Environmental remediation by an integrated microwave/UV illumination method. V. Thermal and nonthermal effects of microwave radiation on the photocatalyst and on the photodegradation of rhodamine-b under UV/Vis radiation, Environ. Sci. Technol., vol. 37, pp.5813-5822, (2003).

DOI: 10.1021/es030326i

Google Scholar

[3] G. L. Baughman, E. J. Weber, Transformation of dyes and related-compunds in anoxic sediment-kinetics and products, Environ. Sci. Technol., vol. 28, pp.267-276, (1994).

DOI: 10.1021/es00051a013

Google Scholar

[4] C. C. Hu, C. C. Huang, K. H. Chang, A novel solution for cathodic deposition of porous TiO2 films, Electrochem. Commu., vol. 11, p.434–437, (2009).

DOI: 10.1016/j.elecom.2008.12.012

Google Scholar

[5] W. J. Zhang, K. L. Wang, S. L. Zhu, Y. Li, F. H. Wang, H. B. He, Yttrium doped TiO2 films prepared by means of DC reactive magnetron sputtering, Chem. Eng. J., vol. 155, pp.83-87, (2009).

DOI: 10.1016/j.cej.2009.06.039

Google Scholar

[6] W. J. Zhang, K. L. Wang, Y. Yu, H. B. He. TiO2/HZSM-5 nano-composite photocatalyst: HCl treatment of NaZSM-5 promotes photocatalytic degradation of methyl orange, Chem. Eng. J., vol. 163, pp.62-67, (2010).

DOI: 10.1016/j.cej.2010.07.042

Google Scholar

[7] Haroldo G. Oliveira, Daiane C. Nery, Claudia Longo, Effect of applied potential on photocatalytic phenol degradation using nanocrystalline TiO2 electrodes, Appl. Catal. B, vol. 93, p.205–211, (2010).

DOI: 10.1016/j.apcatb.2009.09.030

Google Scholar

[8] W. Y. Gan, H. J. Zhao, R. Amal, Photoelectrocatalytic activity of mesoporous TiO2 thin film electrodes, Appl. Catal. A, vol. 354, pp.8-16, (2009).

DOI: 10.1016/j.apcata.2008.10.054

Google Scholar

[9] Ehsan Amereh, Shahrara Afshar, Photodegradation of acetophenone and toluene in water by nano-TiO2 powder supported on NaX zeolite, Mater. Chem. Phy., vol. 120, p.356–360, (2010).

DOI: 10.1016/j.matchemphys.2009.11.019

Google Scholar

[10] P. Frach, D. GloX, Chr. Metzner, T. Modes, B. Scheffel, O. Zywitzki, Deposition of photocatalytic TiO2 layers by pulse magnetron sputtering and by plasma-activated evaporation, Vac., vol. 80, p.679–683, (2006).

DOI: 10.1016/j.vacuum.2005.11.001

Google Scholar