[1]
Vapnik V. The Nature of Statistical Learning [M]. New York:Springer, (1995).
Google Scholar
[2]
Ge M, Du R, Zhang C C, Xu Y S. Fault diagnosis using support vector machine with an application in metal stamping operations[J]. Mechanical Systems and Signal Processing, 2004, 18: 143~159.
DOI: 10.1016/s0888-3270(03)00071-2
Google Scholar
[3]
VAPN IK V. The nature of statistical learning theory[M]. New York: wiley, (1998).
Google Scholar
[4]
CHAPELLE O, VAPN IKV, MUKHERJEE S. Choosing multiple parameters for support vector machines [J]. Machine Learning, 2002, 46 (1) : 131 - 159.
Google Scholar
[5]
AYATN E, CHERETM, SUEN C Y. Automatic model selection for the optimization of SVM kernels [ J ]. Pattern Recognition, 2005, 38: 1733 – 1745.
DOI: 10.1016/j.patcog.2005.03.011
Google Scholar
[6]
KEERTH I S S. Efficient tuning of SVM hyper parameters using radius/margin bound and iterative algorithms[J]. IEEE Trans Neural Networks, 2002, 13 ( 5 ) : 1225 - 1229.
DOI: 10.1109/tnn.2002.1031955
Google Scholar
[7]
IMBAULT F, LEBART K. A stochastic optimization approach for parameters tuning of support vector machines [C] / /Proceeding of the 17th International Conference on Pattern Recognition. Cambridge, United Kingdom: [ s. n. ] , 2004: 981 - 984.
DOI: 10.1109/icpr.2004.1333843
Google Scholar
[8]
DUAN K B, KEERTH I S S, POO A N. Evaluation of simple performance measures for tuning SVM hyper parameters [ J ]. Neural computing , 2003, 51: 41 - 59.
DOI: 10.1016/s0925-2312(02)00601-x
Google Scholar