[1]
P. Stoica and R. Moses, Introduction to spectral Analysis., Englewood Cliffs, NJ: Prentice-Hall, (1997).
Google Scholar
[2]
S.M. Kay, Modern Spectral Estimation, Englewood Cliffs, NJ: Prentice-Hall, (1998).
Google Scholar
[3]
Sheng Lu, Ki Hwan Jus, A New Algorithm for Linear and Nonlinear ARMA Model Parameter Estimation Using Affine Geometry., IEEE Transactions On Biomedical Engineering, vol. 48, no. 10, (2001).
DOI: 10.1109/10.951514
Google Scholar
[4]
J. L. Rojo-Alvarez, M. Martinez-Ramon, Support vector method for robust ARMA system identification., IEEE Transactions On Signal Processing}, vol. 52, 2004, pp.155-164.
DOI: 10.1109/tsp.2003.820084
Google Scholar
[5]
G.B. Giannakis,Y. Inouye, and J.M. Mendel, Cumulant based parameter estimation of multichannel moving-average processesm, IEEE Trans Automat. Contr, pp.783-787, (1989).
DOI: 10.1109/9.29415
Google Scholar
[6]
D.Q. Mayne and F. Firoozan, Linear identification of ARMA processes, Automatica, vol. 18, pp.461-466, (1982).
DOI: 10.1016/0005-1098(82)90074-7
Google Scholar
[7]
J.A. Cadzow, High performance spectral estimation-A new ARMA method, IEEE Trans. Acoust., Speeech, Signal processing, vol. ASSP-28, pp.524-529, (1994).
DOI: 10.1109/tassp.1980.1163440
Google Scholar
[8]
A. Swami and J.M. Mendel, ARMA parameter estimation using only output cumulants., IEEE Trans. Acoust., Speeech, Signal processing, vol. 38, pp.1257-1265, (1990).
DOI: 10.1109/29.57554
Google Scholar
[9]
Z.P. Deng and Y.S. Xia, A Fast Algorithm for 2-D ARMA Parameters Estimation., Advances In Neural Networks, Lecture Notes in Computer Science, Springe, May, (2009).
DOI: 10.1007/978-3-642-01507-6_99
Google Scholar
[10]
V. Papakos and S.D. Fassois, Multichannel Indentification of Aircraft Skeleton Structures Under Unobservable Excitation: A Vector AR/ARMA Framework, Mechanical Systems and Signal Processing, vol. 17, pp.1271-1290, (2002).
DOI: 10.1006/mssp.2002.1575
Google Scholar
[11]
Ananthram Swami, Multichannel ARMA Processes, IEEE Transactions On Signal Processing}, vol. 42, no. 10, (1994).
Google Scholar
[12]
J. Mari, P. Stoica, and T. McKelvey, Vector ARMA Estimation: A Reliable Subspace Approach, IEEE Transactions On Signal Processing, vol. 48, pp.2092-2104, (2000).
DOI: 10.1109/78.847793
Google Scholar
[13]
Guy Melard, Roch Roy and Abdessamad Saidi, Exact maximum likelihood estimation of structured or unit root multivariate time series models, Computational Statistics and Data Analysis, pp.2958-2986, (2006).
DOI: 10.1016/j.csda.2005.06.009
Google Scholar
[14]
Epifanio Bagarinao and Shunsuke Sato, Algorithm for Vector Autoregressive Model Parameter Estimation sing an Orthogonalization Procedure, Biomedical Engineering Society vol. 30, pp.260-271, (2002).
DOI: 10.1114/1.1454134
Google Scholar
[15]
Davila CE, A subspace approach to estimation of autoregressive arameters from noisy measurements, , IEEE Transactions On ignal Processing, vol. 46, pp.531-536, (1998).
DOI: 10.1109/78.655442
Google Scholar
[16]
Mahmoudi, A Estimation of the parameters of multichannelautoregressive signals from noisy observations, , sgnal rocessing, vol88, pp.2777-2780, (2008).
Google Scholar