A Fast Algorithm for Vector ARMA Parameter Estimation

Article Preview

Abstract:

In this paper, a fast algorithm for vector autoregressivemoving-average (ARMA) parameter estimation under noise environments is proposed. Based on an equivalent AR parameter model technique and a Yule-Walker equation technique, solving the parameter estimation problem of the VARMA model is well converted into solving linear equations. Therefore, the proposed algorithm has a lower computational complexity and a faster speed than conventional algorithms. Application examples with application to Lorenz systems confirm that the proposed algorithm can obtain a good solution.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 433-440)

Pages:

4475-4481

Citation:

Online since:

January 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] P. Stoica and R. Moses, Introduction to spectral Analysis., Englewood Cliffs, NJ: Prentice-Hall, (1997).

Google Scholar

[2] S.M. Kay, Modern Spectral Estimation, Englewood Cliffs, NJ: Prentice-Hall, (1998).

Google Scholar

[3] Sheng Lu, Ki Hwan Jus, A New Algorithm for Linear and Nonlinear ARMA Model Parameter Estimation Using Affine Geometry., IEEE Transactions On Biomedical Engineering, vol. 48, no. 10, (2001).

DOI: 10.1109/10.951514

Google Scholar

[4] J. L. Rojo-Alvarez, M. Martinez-Ramon, Support vector method for robust ARMA system identification., IEEE Transactions On Signal Processing}, vol. 52, 2004, pp.155-164.

DOI: 10.1109/tsp.2003.820084

Google Scholar

[5] G.B. Giannakis,Y. Inouye, and J.M. Mendel, Cumulant based parameter estimation of multichannel moving-average processesm, IEEE Trans Automat. Contr, pp.783-787, (1989).

DOI: 10.1109/9.29415

Google Scholar

[6] D.Q. Mayne and F. Firoozan, Linear identification of ARMA processes, Automatica, vol. 18, pp.461-466, (1982).

DOI: 10.1016/0005-1098(82)90074-7

Google Scholar

[7] J.A. Cadzow, High performance spectral estimation-A new ARMA method, IEEE Trans. Acoust., Speeech, Signal processing, vol. ASSP-28, pp.524-529, (1994).

DOI: 10.1109/tassp.1980.1163440

Google Scholar

[8] A. Swami and J.M. Mendel, ARMA parameter estimation using only output cumulants., IEEE Trans. Acoust., Speeech, Signal processing, vol. 38, pp.1257-1265, (1990).

DOI: 10.1109/29.57554

Google Scholar

[9] Z.P. Deng and Y.S. Xia, A Fast Algorithm for 2-D ARMA Parameters Estimation., Advances In Neural Networks, Lecture Notes in Computer Science, Springe, May, (2009).

DOI: 10.1007/978-3-642-01507-6_99

Google Scholar

[10] V. Papakos and S.D. Fassois, Multichannel Indentification of Aircraft Skeleton Structures Under Unobservable Excitation: A Vector AR/ARMA Framework, Mechanical Systems and Signal Processing, vol. 17, pp.1271-1290, (2002).

DOI: 10.1006/mssp.2002.1575

Google Scholar

[11] Ananthram Swami, Multichannel ARMA Processes, IEEE Transactions On Signal Processing}, vol. 42, no. 10, (1994).

Google Scholar

[12] J. Mari, P. Stoica, and T. McKelvey, Vector ARMA Estimation: A Reliable Subspace Approach, IEEE Transactions On Signal Processing, vol. 48, pp.2092-2104, (2000).

DOI: 10.1109/78.847793

Google Scholar

[13] Guy Melard, Roch Roy and Abdessamad Saidi, Exact maximum likelihood estimation of structured or unit root multivariate time series models, Computational Statistics and Data Analysis, pp.2958-2986, (2006).

DOI: 10.1016/j.csda.2005.06.009

Google Scholar

[14] Epifanio Bagarinao and Shunsuke Sato, Algorithm for Vector Autoregressive Model Parameter Estimation sing an Orthogonalization Procedure, Biomedical Engineering Society vol. 30, pp.260-271, (2002).

DOI: 10.1114/1.1454134

Google Scholar

[15] Davila CE, A subspace approach to estimation of autoregressive arameters from noisy measurements, , IEEE Transactions On ignal Processing, vol. 46, pp.531-536, (1998).

DOI: 10.1109/78.655442

Google Scholar

[16] Mahmoudi, A Estimation of the parameters of multichannelautoregressive signals from noisy observations, , sgnal rocessing, vol88, pp.2777-2780, (2008).

Google Scholar