Axial Resolution of the Laser Affected Voxel of the Ultra-Short Pulse Laser Modification inside of the Transparent Media

Article Preview

Abstract:

The Ultra-Short pulse laser direct 3D writing inside of the transparent material becomes a commonly accepted tool to achieve the micrometer scale optical devices and lab-on-chips. The disproportionate scale of the laser affected volume (Affected voxel) along the axial direction degrades the precision of the processing. The refraction will not only change the focusing position and elongate the axial scale of the affected voxel, but also cause harmful astigmatism. The shape of the affected voxel is discussed and experimentally detected to provide the information to establish a practical processing plan.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 433-440)

Pages:

5741-5745

Citation:

Online since:

January 2012

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] K. Sogioka,Y. Hanada and K. Midorikawa, Three-dimensional femtosecond laser micromachining of photosensitive glass for biomicrochips, Laser & Photon. Rev., 1-15(2009)/DOI 10. 1002/lpor. 200810074.

DOI: 10.1002/lpor.200810074

Google Scholar

[2] An-Chun Tien, Sterling Backus, Henry Kapteyn, Margaret Murnane, and Gérard Mourou, Short-Pulse Laser Damage in Transparent Materials as a Function of Pulse Duration, Applied Phys. Letter. 82 (19) pp.3883-3886 (1999).

DOI: 10.1103/physrevlett.82.3883

Google Scholar

[3] A. Rosenfeld, M. Lorenz, R. Stoian, D. Ashkenasi Ultrashot-laser-pulse damage threshold of transparent materials and the role of incubation, Applied Physics A 69[suppl. ] pp. S373-S376(1999).

DOI: 10.1007/s003390051419

Google Scholar

[4] Miura,J. Qiu Photowritten optical waveguides in various glasses with ultrashort pulse laser, Applied Phys. Letter, (1997) 71, pp.3329-3331.

DOI: 10.1063/1.120327

Google Scholar

[5] Glawdel Microfluidic system with integarated electroosmtics pumps, concencertratio gradient generator and fish cell line (Rtgill-W1)- towards water toxicity testing, , (2009)Lab on Chip 2009, 9, pp.3243-3250.

DOI: 10.1039/b911412m

Google Scholar

[6] J. Bonse, S. Baudach, J. Krüger, W. Kautek, M. Lenzner Femtosecond laser ablation of silicon–modification thresholds and morphology, Appl. Phys. A (Materials Science & Processing) vol. 74, p.19–25 (2002) / (DOI) 10. 1007/s003390100893.

DOI: 10.1007/s003390100893

Google Scholar

[7] Gang Chang and Yiliu Tu, The threshold intensity measurement in the femtosecond laser ablation by defocusing, (unpublished).

Google Scholar

[8] Y. Bellouard, Scannung thremal microscopy and Raman analysis of bulk silica exposed to low-energy femtosecond laser pulse, Optics Express (2008)Vol. 16 No, 24, p.19520.

DOI: 10.1364/oe.16.019520

Google Scholar

[9] J. Hager, T. Michalke, R. Matzdorf, Correct application of Fresnel's equations for intensity analysis of angle-resolved photoemission data, Surface Science vol. 600 (2006) p.1129–1133.

DOI: 10.1016/j.susc.2006.01.006

Google Scholar

[10] Malitson,I. H, Interspecimen Comparison of the Refractive Index of Fused Silica, . (1965). Journal of the Optical Society of America 55: p.1205.

DOI: 10.1364/josa.55.001205

Google Scholar

[11] http: /refractiveindex. info/?group=GLASSES&material=F_ SIICA.

Google Scholar