Quantized Feedback Control under Dynamic Logarithmic Quantization Schemes

Article Preview

Abstract:

This paper addresses the quantized feedback stabilization problem for networked control systems with unbounded process disturbance, where sensors, controllers and plants are connected by digital communication channels. A dynamic logarithmic quantization policy is proposed to stabilize the unstable plant. It is derived that the quantization policy can maintain stabilization in the presence of unbounded and possibly non-Gaussian process disturbance. Simulation results show the validity of the proposed scheme.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 433-440)

Pages:

6235-6241

Citation:

Online since:

January 2012

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] E. Fridman and U. Shaked, An improved stabilization method for linear time-delay systems, IEEE Trans. Automat. Control, vol. 47, no. 11, pp.1931-1937, (2002).

DOI: 10.1109/tac.2002.804462

Google Scholar

[2] W. S. Wong and R. W. Brockett, Systems with finite communication bandwidth constraints II: Stabilization with limited information feedback, IEEE Transactions on Automatic Control, vol. 44, PP. 1049-1053, (1999).

DOI: 10.1109/9.763226

Google Scholar

[3] H. shii and C. R. Francis, Quadratic stabilization of sampled-data systems with quantization, Automatica, vol. 39, pp.1793-1800, (2003).

DOI: 10.1016/s0005-1098(03)00179-1

Google Scholar

[4] K. Li and J. Baillieul, Robust quantization for digital finite communication bandwidth (DFCB) control, IEEE Transactions on Automatic Control, vol. 49, no. 9, pp.1573-1597, (2004).

DOI: 10.1109/tac.2004.834106

Google Scholar

[5] K. Li and J. Baillieul, Robust and efficient quantization and coding for control of multidimensional linear systems under data rate constraints, International Journal of Robust and Nonlinear Control, vol. 17, pp.898-920, (2007).

DOI: 10.1002/rnc.1142

Google Scholar

[6] S. Graf and H. Luschgy, Foundations of Quantization for Probability Distributions, Springer-Verlag New York, Inc, Secaucus, NJ, (2000).

Google Scholar

[7] G. N. Nair and R. J. Evans, Stabilizability of Stochastic Linear Systems with Finite Feedback Data Rates, SIAM Journal on Control and Optimization, vol. 43, no. 2, pp.413-436, (2004).

DOI: 10.1137/s0363012902402116

Google Scholar

[8] D. Liberzon, On stabilization of linear systems with limited information, IEEE Transactions on Automatic Control, vol. 48, no. 2, pp.304-307, (2003).

DOI: 10.1109/tac.2002.808487

Google Scholar

[9] R. W. Brockett and D. Liberzon, "Quantized feedback stabilization of linear systems, IEEE Transactions on Automatic Control, vol. 45, no. 7, pp.1279-1289, (2000).

DOI: 10.1109/9.867021

Google Scholar

[10] D. Liberzon and D. Nesic, Input-to-state stabilization of linear systems with quantized state measurements, IEEE Transactions on Automatic Control, vol. 52, pp.767-781, (2007).

DOI: 10.1109/tac.2007.895850

Google Scholar

[11] F. Fagnani and S. Zampieri, Quantized stabilization of linear systems: Complexity versus performance, IEEE Transactions on Automatic Control, vol. 49, no. 9, pp.1534-1548, (2004).

DOI: 10.1109/tac.2004.834111

Google Scholar

[12] T. Kameneva and D. Nesic, Robustness of quantized control systems with mismatch between coder initializations, Automatica, (2009).

DOI: 10.1016/j.automatica.2008.10.020

Google Scholar

[13] A. S. Matveev and A. V. Savkin, An Analogue of Shannon Information Theory for Detection and Stabilization via Noisy Discrete Communication Channels, SIAM Journal on Control and Optimization, vol. 46, no. 4, pp.1323-1367, September (2007).

DOI: 10.1137/040621697

Google Scholar

[14] A. S. Matveev and A. V. Savkin, Shannon zero error capacity in the problems of state estimation and stabilization via noisy communication channels, International Journal of Control. vol. 80, pp.241-255, (2007).

DOI: 10.1080/002071706000981775

Google Scholar

[15] J. Baillieul, Feedback designs in information based control, In Stochastic Theory and Control Proceedings of a Workshop Held in Pasik-Duncan, Ed. New York: Springer-Verlag, pp.35-57, (2001).

DOI: 10.1007/3-540-48022-6_3

Google Scholar

[16] S. Yksel and T. Basar, Communication constraints for decentralized stabilizability with time-invariant policies, IEEE Trans. Automat. Control, vol. 52, no. 6, pp.1060-1066, Jun. (2007).

DOI: 10.1109/tac.2007.899085

Google Scholar

[17] N. Elia, When Bode meets Shannon: Control-oriented feedback communication schemes, IEEE Trans. Automat. Control, vol. 49, no. 9, pp.1477-1488, Sep. (2004).

DOI: 10.1109/tac.2004.834119

Google Scholar

[18] S. Tatikonda and S. K. Mitter, Control under communication constraints, IEEE Trans. Automat. Control, vol. 49, no. 7, pp.1056-1068, Jul. (2004).

DOI: 10.1109/tac.2004.831187

Google Scholar

[19] H. Ishii and B. A. Francis, Quadratic stabilization of sampled-data systems with quantization, Automatica, vol. 39, no. 10, pp.1793-1800, (2003).

DOI: 10.1016/s0005-1098(03)00179-1

Google Scholar

[20] D. F. Coutinho, M. Fu and C. Souza, Input and output quantized feedback linear systems, IEEE Trans. Automat. Control, vol. 55, no. 3, pp.761-766, (2004).

DOI: 10.1109/tac.2010.2040497

Google Scholar