[1]
R. E. Curry, Estimation and Control With Quantized Measurements, Cambridge, MA: MIT Press, (1970).
Google Scholar
[2]
D. F. Delchamps, Stabilizing a linear system with quantized state feedback, IEEE Trans. Autom. Control, vol. 35, no. 8, p.916–924, Aug. (1990).
DOI: 10.1109/9.58500
Google Scholar
[3]
R. K. Miller, A. N. Michel, and J. A. Farrel, Quantizer effects on steady state error specifications of digital control systems, IEEE Trans. Autom. Control, vol. 34, no. 6, p.651–654, Jun. (1989).
DOI: 10.1109/9.24241
Google Scholar
[4]
W. S. Wong and R. W. Brockett, Systems with finite communication bandwidth constraints I: State estimation problems, IEEE Trans. Autom. Control, vol. 42, no. 9, p.1294–1299, Sep. (1997).
DOI: 10.1109/9.623096
Google Scholar
[5]
W. S. Wong and R. W. Brockett, Systems with finite communication bandwidth constraints II: Stabilization with limited information feedback, IEEE Trans. Autom Control, vol. 44, no. 5, p.1049–1053, May (1999).
DOI: 10.1109/9.763226
Google Scholar
[6]
J. Baillieul, Feedback designs in information-based control, in Proc. Stochastic Theory and Control Workshop, p.35–57, (2001).
DOI: 10.1007/3-540-48022-6_3
Google Scholar
[7]
R. W. Brockett and D. Liberzon, Quantized feedback stabilization of linear systems, IEEE Trans. Autom. Control, vol. 45, no. 7, p.1279–1289, Jul. (2000).
DOI: 10.1109/9.867021
Google Scholar
[8]
G. N. Nair and R. J. Evans, Stabilization with data-rate-limited feedback: Tightest attainable bounds, Syst. Control Lett., vol. 41, p.49–56, (2000).
DOI: 10.1016/s0167-6911(00)00037-2
Google Scholar
[9]
N. Elia and K. Mitter, Stabilization of linear systems with limited information, IEEE Trans. Autom. Control, vol. 46, no. 9, p.1384–1400, Sep. (2001).
DOI: 10.1109/9.948466
Google Scholar
[10]
N. Elia and K. Mitter, Exponential stabilisability of finite-dimensional linear systems with limited data rates, Automatica, vol. 39, p.585–593, (2003).
DOI: 10.1016/s0005-1098(02)00285-6
Google Scholar
[11]
S. Tatikonda and S. Mitter, Control under communication constraints, IEEE Trans. Autom. Control, vol. 49, no. 7, p.1056–1068, Jul. (2004).
DOI: 10.1109/tac.2004.831187
Google Scholar
[12]
K. Li and J. Baillieul, Robust quantization for digital finite communication bandwidth (DFCB) control, IEEE Trans. Autom. Control, vol. 49, no. 9, pp.1573-1584, Sep. (2004).
DOI: 10.1109/tac.2004.834106
Google Scholar
[13]
G. N. Nair and R. J. Evans, Stabilizability of stochastic linear systems with finite feedback data rates, SIAM J. Control Optim., vol. 43, no. 2, p.413–436, Jul. (2004).
DOI: 10.1137/s0363012902402116
Google Scholar
[14]
N. Elia and S. K. Mitter, Stabilization of linear systems with limited information, IEEE Trans. Automat. Control., vol. 46, no. 9, p.1384–1400, Sep. (2001).
DOI: 10.1109/9.948466
Google Scholar
[15]
N. Elia, When Bode meets Shannon: Control-oriented feedback communication schemes, IEEE Trans. Automat. Control, vol. 49, no. 9, p.1477–1488, (2004).
DOI: 10.1109/tac.2004.834119
Google Scholar
[16]
S. Tatikonda and S. K. Mitter, Control over noisy channels, IEEE Trans. Autom. Control, vol. 49, no. 7, p.1196–1201, Jul. (2004).
DOI: 10.1109/tac.2004.831102
Google Scholar
[17]
S. Tatikonda, A. Sahai, and S. K. Mitter, Stochastic linear control over a communication channel, IEEE Trans. Autom. Control, vol. 49, no. 9, p.1549–1561, Sep. (2004).
DOI: 10.1109/tac.2004.834430
Google Scholar
[18]
N. C. Martins, M. A. Dahleh, and N. Elia, Feedback stabilization of uncertain systems in the presence of a direct link, IEEE Trans. Autom. Control, vol. 51, no. 3, p.438–447, Mar. (2006).
DOI: 10.1109/tac.2006.871940
Google Scholar
[19]
N. C. Martins and M. A. Dahleh, Fundamental limitations of disturbance attenuation in the presence of side information, IEEE Trans. Automat. Control, vol. 52, no. 1, p.56–66, Jan. (2007).
DOI: 10.1109/tac.2006.887898
Google Scholar
[20]
E. Fridman and U. Shaked, An improved stabilization method for linear time-delay systems, IEEE Trans. Automat. Control, vol. 47, no. 11, pp.1931-1937, (2002).
DOI: 10.1109/tac.2002.804462
Google Scholar
[21]
T. Kameneva and D. Nesic, Robustness of quantized control systems with mismatch between coder/decoder initializations, Automatica, (2009).
DOI: 10.1016/j.automatica.2008.10.020
Google Scholar
[22]
A. Gurt, G. N. Nair, Internal stability of dynamic quantised control for stochastic linear plants, Automatic, pp.1246-1255, (2009).
DOI: 10.1016/j.automatica.2009.02.016
Google Scholar