Observer-Based Quantized Feedback Control via Noisy Communication Channels

Article Preview

Abstract:

This paper investigates the input and output quantized control problem for stochastic linear systems with unbounded and possibly non-Gaussian process disturbance, where sensors, controllers and plants are connected by a noisy digital communication channel. Due to the unbounded process disturbance, a dynamic, logarithmic quantization scheme is proposed. An observer-based control policy is presented to stabilize the unstable plant in the mean square sense. Simulation results show the validity of the proposed quantization and control policy.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 433-440)

Pages:

6242-6249

Citation:

Online since:

January 2012

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] R. E. Curry, Estimation and Control With Quantized Measurements, Cambridge, MA: MIT Press, (1970).

Google Scholar

[2] D. F. Delchamps, Stabilizing a linear system with quantized state feedback, IEEE Trans. Autom. Control, vol. 35, no. 8, p.916–924, Aug. (1990).

DOI: 10.1109/9.58500

Google Scholar

[3] R. K. Miller, A. N. Michel, and J. A. Farrel, Quantizer effects on steady state error specifications of digital control systems, IEEE Trans. Autom. Control, vol. 34, no. 6, p.651–654, Jun. (1989).

DOI: 10.1109/9.24241

Google Scholar

[4] W. S. Wong and R. W. Brockett, Systems with finite communication bandwidth constraints I: State estimation problems, IEEE Trans. Autom. Control, vol. 42, no. 9, p.1294–1299, Sep. (1997).

DOI: 10.1109/9.623096

Google Scholar

[5] W. S. Wong and R. W. Brockett, Systems with finite communication bandwidth constraints II: Stabilization with limited information feedback, IEEE Trans. Autom Control, vol. 44, no. 5, p.1049–1053, May (1999).

DOI: 10.1109/9.763226

Google Scholar

[6] J. Baillieul, Feedback designs in information-based control, in Proc. Stochastic Theory and Control Workshop, p.35–57, (2001).

DOI: 10.1007/3-540-48022-6_3

Google Scholar

[7] R. W. Brockett and D. Liberzon, Quantized feedback stabilization of linear systems, IEEE Trans. Autom. Control, vol. 45, no. 7, p.1279–1289, Jul. (2000).

DOI: 10.1109/9.867021

Google Scholar

[8] G. N. Nair and R. J. Evans, Stabilization with data-rate-limited feedback: Tightest attainable bounds, Syst. Control Lett., vol. 41, p.49–56, (2000).

DOI: 10.1016/s0167-6911(00)00037-2

Google Scholar

[9] N. Elia and K. Mitter, Stabilization of linear systems with limited information, IEEE Trans. Autom. Control, vol. 46, no. 9, p.1384–1400, Sep. (2001).

DOI: 10.1109/9.948466

Google Scholar

[10] N. Elia and K. Mitter, Exponential stabilisability of finite-dimensional linear systems with limited data rates, Automatica, vol. 39, p.585–593, (2003).

DOI: 10.1016/s0005-1098(02)00285-6

Google Scholar

[11] S. Tatikonda and S. Mitter, Control under communication constraints, IEEE Trans. Autom. Control, vol. 49, no. 7, p.1056–1068, Jul. (2004).

DOI: 10.1109/tac.2004.831187

Google Scholar

[12] K. Li and J. Baillieul, Robust quantization for digital finite communication bandwidth (DFCB) control, IEEE Trans. Autom. Control, vol. 49, no. 9, pp.1573-1584, Sep. (2004).

DOI: 10.1109/tac.2004.834106

Google Scholar

[13] G. N. Nair and R. J. Evans, Stabilizability of stochastic linear systems with finite feedback data rates, SIAM J. Control Optim., vol. 43, no. 2, p.413–436, Jul. (2004).

DOI: 10.1137/s0363012902402116

Google Scholar

[14] N. Elia and S. K. Mitter, Stabilization of linear systems with limited information, IEEE Trans. Automat. Control., vol. 46, no. 9, p.1384–1400, Sep. (2001).

DOI: 10.1109/9.948466

Google Scholar

[15] N. Elia, When Bode meets Shannon: Control-oriented feedback communication schemes, IEEE Trans. Automat. Control, vol. 49, no. 9, p.1477–1488, (2004).

DOI: 10.1109/tac.2004.834119

Google Scholar

[16] S. Tatikonda and S. K. Mitter, Control over noisy channels, IEEE Trans. Autom. Control, vol. 49, no. 7, p.1196–1201, Jul. (2004).

DOI: 10.1109/tac.2004.831102

Google Scholar

[17] S. Tatikonda, A. Sahai, and S. K. Mitter, Stochastic linear control over a communication channel, IEEE Trans. Autom. Control, vol. 49, no. 9, p.1549–1561, Sep. (2004).

DOI: 10.1109/tac.2004.834430

Google Scholar

[18] N. C. Martins, M. A. Dahleh, and N. Elia, Feedback stabilization of uncertain systems in the presence of a direct link, IEEE Trans. Autom. Control, vol. 51, no. 3, p.438–447, Mar. (2006).

DOI: 10.1109/tac.2006.871940

Google Scholar

[19] N. C. Martins and M. A. Dahleh, Fundamental limitations of disturbance attenuation in the presence of side information, IEEE Trans. Automat. Control, vol. 52, no. 1, p.56–66, Jan. (2007).

DOI: 10.1109/tac.2006.887898

Google Scholar

[20] E. Fridman and U. Shaked, An improved stabilization method for linear time-delay systems, IEEE Trans. Automat. Control, vol. 47, no. 11, pp.1931-1937, (2002).

DOI: 10.1109/tac.2002.804462

Google Scholar

[21] T. Kameneva and D. Nesic, Robustness of quantized control systems with mismatch between coder/decoder initializations, Automatica, (2009).

DOI: 10.1016/j.automatica.2008.10.020

Google Scholar

[22] A. Gurt, G. N. Nair, Internal stability of dynamic quantised control for stochastic linear plants, Automatic, pp.1246-1255, (2009).

DOI: 10.1016/j.automatica.2009.02.016

Google Scholar