[1]
Kaslik, E. & Balint, S, Configuration of steady states for Hopfield-type neural networks, in Applied Mathematics and Computation, 182(1), 2006, pp.179-186.
DOI: 10.1016/j.amc.2006.04.054
Google Scholar
[2]
Wan Abdullah, W.A.T., Logic Programming on a Neural Network, in. Int .J. Intelligent Sys, 7, 1992, pp.513-519.
Google Scholar
[3]
Saratha Sathasivam. 2010. Usage of New Activation Function in Neuro-Symbolic Integration. In 4th Asian Physics Sympossium, Bali Indonesia.
Google Scholar
[4]
Saratha Sathasivam. 2010. Neuro symbolic integration using pseudo inverse rule. In Annual International Conference on Advance Topics in Artificial Intelligence. Phuket, Thailand. (ISBN: 978-981-08-7654-8), pp A-69-A-73.
Google Scholar
[5]
Hopfield, J.J., Neural Networks and Physical Systems with Emergent Collective Computational Abilities., in Proceedings. Natl. Acad. Sci. USA. , 79(8), 1982, pp.2554-2558.
DOI: 10.1073/pnas.79.8.2554
Google Scholar
[6]
Browne, A & Sun. R., Connectionist inference models, in Neural Networks, 14(10), 2001, p.1331–1355.
DOI: 10.1016/s0893-6080(01)00109-5
Google Scholar
[7]
Saratha Sathasivam. 2009. Enhancing Logic Programming Performance in Recurrent Hopfield Network, European Journal of Scientific Research, 37(1), pp.1-7.
Google Scholar
[8]
Saratha Sathasivam. 2009. Logical Content in the Recurrent Hopfield Network without Higher Order Connections, European Journal of Scientific Research, 37(3), pp.361-367.
Google Scholar
[9]
Saratha Sathasivam. 2009. Learning Rule Performance Comparison in Hopfield Network, American Journal of Scientific Research, Issue 6, pp.15-22.
Google Scholar
[10]
Saratha Sathsivam & Wan Abdullah, W.A.T. 2010. The Satisfiability Aspect of Logic on Little Hopfield Network, American Journal of Scientific Research, Issue 7, pp.90-105.
Google Scholar
[11]
Saratha Sathasivam. 2010. Upgrading Logic Programming in Hopfield Network, Sains Malaysiana, 39(1), pp.115-118.
Google Scholar
[12]
Zeng, X. & Martinez, R. A new activation function in the Hopfield Network for Solving Optimization Problems. In Fourth International Conference on Artificial Neural Networks and Genetic Algorithms, 1999, pp.1-5.
DOI: 10.1007/978-3-7091-6384-9_13
Google Scholar