[1]
A. Huson, C.W. Spoor, A.J. Verbout, A model of the human knee derived from kinematic principles and its relevance for endoprosthesis design, Acta Morphol. Neerl. – Scand, vol. 24, pp.45-62, (1989).
Google Scholar
[2]
M. Z. Bendjaballah, A. Shirazi-AdI, D. J. Zukor, Biomechanics of the human knee joint in compression: reconstruction, mesh generation and finite element analysis, The Knee, vol. 2, no 2, pp.69-79, (1995).
DOI: 10.1016/0968-0160(95)00018-k
Google Scholar
[3]
F. Bonnel and J-P Micaleff, Biomechanics of the ligaments of the human knee and of artificial ligaments, Surgical Radiologlc Anatomy, vol. 10, pp.221-227, (1988).
DOI: 10.1007/bf02115241
Google Scholar
[4]
R.R. Bini, F. Diefenthaeler, C.B. Mota, Fatigue effects on the coordinative pattern during cycling: Kinetics and kinematics evaluation, Journal of Electromyography and Kinesiology, vol. 20, pp.102-107, (2010).
DOI: 10.1016/j.jelekin.2008.10.003
Google Scholar
[5]
A.E. Yousif and S.R.F. Al-Ruznamachi, A Statical Model of the Human Knee Joint, 25th Southern Biomedical Engineering Conference 2009, IFMBE Proceedings 24, p.227–232, (2009).
DOI: 10.1007/978-3-642-01697-4_80
Google Scholar
[6]
Y. Song, R.E. Debski, V. Musahl, M. Thomas, S. L. -Y. Woo, A three-dimensional finite element model of the human anterior cruciate ligament: a computational analysis with experimental validation, Journal of Biomechanics, vol. 37, p.383–390, (2004).
DOI: 10.1016/s0021-9290(03)00261-6
Google Scholar
[7]
A. Vairis, M. Petousis, N. Vidakis, G. Stefanoudakis, B. Kandyla, Modelling a knee ligament repair device, Proc. IEEE 9th International Symposium on Distributed Computing and Applications To Business, Engineering & Science (DCABES 2010), Hong Kong, 10-12 August (2010).
DOI: 10.1109/dcabes.2010.18
Google Scholar
[8]
M. Petousis, A. Vairis, N. Vidakis, G. Pappas, M. Koudoumas, Exploiting three dimensional printing in medical applications – Two EMTTU lab case studies, Procceddings of the 6th International Conference on New Horizons in Industry, Business and Education, Santorini island, Greece, 27-29 August (2009).
Google Scholar
[9]
S. L-Y. Woo, S.D. Abramowitch, R. Kilger, R. Liang, Biomechanics of knee ligaments: injury, healing, and repair, Journal of Biomechanics, vol. 39, pp.1-20, (2006).
DOI: 10.1016/j.jbiomech.2004.10.025
Google Scholar
[10]
A. Kanamori, S. L-Y. Woo, C.B. Ma, J. Zeminski, T.W. Rudy, G. Li, G.A. Livesay, The Forces in the Anterior Cruciate Ligament and Knee Kinematics During a Simulated Pivot Shift Test: A Human Cadaveric Study Using Robotic Technology, The Journal of Arthroscopic and Related Surgery, vol 16, no 6 (September), p.633–639, (2000).
DOI: 10.1053/jars.2000.7682
Google Scholar
[11]
V. J. Kingsmill and A. Boyde, Variation in the apparent density of human mandibular bone with age and dental status, Journal of Anatomy, vol. 192, no 2, p.233–244, February (1998).
DOI: 10.1046/j.1469-7580.1998.19220233.x
Google Scholar
[12]
R. Boyer, G. Welsch, and E. W. Collings, Materials Properties Handbook: Titanium Alloys, ASM International, Materials Park, (1994).
Google Scholar
[13]
S.C. Cowin, Bone mechanics, CRC Press, (1989).
Google Scholar
[14]
S. L-Y. Woo, A.J. Almarza, R. Liang, and M. B. Fisher, Functional Tissue Engineering of Ligament and Tendon Injuries, Translational Approaches In Tissue Engnineering And Regenerative Medicine, Book Chapter no 9, Artech House Publisher, ISBN-10: 1596931116, ISBN-13: 978-1596931114, Nov. 30, (2007).
DOI: 10.1016/b978-0-12-381422-7.10054-9
Google Scholar
[15]
J. Hashemi, N. Chandrashekar, J. Slauterbeck, The mechanical properties of the human patellar tendon are correlated to its mass density and are independent of sex, Clinical Biomechanics, vol. 20, p.645–652, (2005).
DOI: 10.1016/j.clinbiomech.2005.02.008
Google Scholar
[16]
N.D. Reeves, C.N. Maganaris, N. Maffulli, J. Rittweger, Human patellar tendon stiffness is restored following graft harvest for anterior cruciate ligament surgery, Journal of Biomechanics, vol. 42, pp.797-803, (2009).
DOI: 10.1016/j.jbiomech.2009.01.030
Google Scholar
[17]
Li G., Lopez O., Rubash H., Variability of a three-dimensional finite element model constructed using magnetic resonance images of a knee for joint contact stress analysis, ASME Journal of Biomechanical Engineering, vol. 123, p.341.
DOI: 10.1115/1.1385841
Google Scholar