The Study of Low Frequency Oscillations Parameters Identification in Power System Based on Improved HHT Method

Article Preview

Abstract:

The problem of low frequency oscillations (LFOs) parameters identification in power system with the method of improved Hilbert-Huang transform (HHT) is addressed. LFOs probably cause the great potential threat to the stable operation of power system, so identifying the parameters of LFOs is very important to develop the control strategies of restraining oscillations. In this paper, the LFOs signal is first processed by empirical mode decomposition (EMD) which is improved by the approach of endpoint extension used AR data prediction, stop shifting criterion and end condition via energy difference factor. The improved EMD is able to avoid the energy leakage and damping loss and also make the intrinsic mode functions (IMFs) closer to the true oscillations. Then the approach of parameters identification using least squares (LS) fitting algorithm based on the results of IMFs’ Hilbert transform is presented. Finally, case studies demonstrate the effectiveness of improved HHT process and LS parameters identification methods used in LFOs analysis of power system.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 433-440)

Pages:

781-787

Citation:

Online since:

January 2012

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] M. Bronzini, S. Bruno, M. De Benedictis and M. La Scala, Power system modal identification via wavelet analysis., in IEEE Conference on Power Tech, p.2041 – 2046, (2007).

DOI: 10.1109/pct.2007.4538632

Google Scholar

[2] N. Huang et al., The empirical mode decomposition and the hilbert spectrum for nonlinear and non-startionary time series analysis, Proc. R. Soc. Lond. A, vol. 454, p.903–995, Mar, (1998).

Google Scholar

[3] N.E. Huang, M. Wu, S. Long, S. Shen, W. Qu, P. Gloerson, andK. Fan, Aconfidence limit for the empirical mode decomposition and hilbert spectral analysis, Proc. R. Soc. Lond. A, vol. 459, no. 2037, p.2317 – 2345, September (2003).

DOI: 10.1098/rspa.2003.1123

Google Scholar

[4] Z. Wu and N. E. Huang, Ensemble empirical mode decomposition: A noise-assisted data analysis method, Advances in Adaptive Data Analysis, vol. 1, no. 1, p.1–41, (2009).

DOI: 10.1142/s1793536909000047

Google Scholar

[5] G. Rilling, P. Flandrin, and P. Goncalves, On empirical mode decomposition and its algorithms, in IEEE-EURASIP Workshop on Nonlinear Signal and Image Processing, NSIP-03, (2003).

Google Scholar

[6] P. Flandrin, G. Rilling, and P. Gonc ¸alv` es, Empirical mode decomposition as a filter bank, IEEE Sig. Proc. Lett., vol. 11, no. 2, p.112–114, (2004).

DOI: 10.1109/lsp.2003.821662

Google Scholar

[7] J. C. Echeverria, J. A. Crowe, M. S. Woolfson, and B. R. Hayes-Gill, Application of empirical mode decomposition to heart rate variability analysis, Med. Biol. Eng. Comput., vol. 39, no. 4, p.471–479, (2001).

DOI: 10.1007/bf02345370

Google Scholar

[8] B. M. Battista, C. Knapp, T. McGee, and V. Goebel, Application of the empirical mode decomposition and Hilbert-Huang transform to seismic reflection data, Geophysics, vol. 72, no. 2, p.29–37, (2007).

DOI: 10.1190/1.2437700

Google Scholar

[9] N. Senroy, S. Suryanarayanan, and P. F. Ribeiro, An improved Hilbert–Huang method for analysis of time-varying waveforms in power quality, IEEE Trans. Power Syst., vol. 22, no. 4, p.1843–1850, (2007).

DOI: 10.1109/tpwrs.2007.907542

Google Scholar

[10] A. R. Messina and V. Vittal, Nonlinear, non-stationary analysis of interarea oscillations via Hilbert spectral analysis, IEEE Trans. Power Syst., vol. 21, no 3, p.1234–1241, (2006).

DOI: 10.1109/tpwrs.2006.876656

Google Scholar

[11] A. R. Messina, V. Vittal, D. Ruiz-Vega, and G. Enriquez-Harper, Interpretation and visualization of wide-area PMU measurements using Hilbert analysis, IEEE T. Power Syst., vol. 21, no. 4, p.1763–1771, (2006).

DOI: 10.1109/tpwrs.2006.881153

Google Scholar

[12] Senroy N, Generator coherency using the Hilbert-Huang transform, IEEE Trans. Power Sys., vol. 23, no. 4, p.1701–1708, (2008).

DOI: 10.1109/tpwrs.2008.2004736

Google Scholar