Analysis of 2,6-Dinitrotoluene Toxicity to Common Carp (Cyprinus carpio)

Article Preview

Abstract:

2,6-dinitrotoluene (2,6-DNT) is the preferential toxicants stipulated by OECD and EPA of USA. The present study was conducted to determine the effect of 2,6-DNT chemical on acute toxicity and subacute toxicity in common carp (Cyprinus carpio). The 24h, 48h, 72h and 96h LC50 values of common carp by 2,6-DNT were 1.137±0.023mg/L, 0.830±0.024mg/L, 0.661±0.019mg/L and 0.479±0.020mg/L, respectively. The subacute experiment shows that C. carpio are rarely affected by 0.0251mg/L 2,6-DNT, but significantly affected by 0.0398, 0.0631, 0.0794mg/L 2,6-DNT in contrast to the controlled sample (p liver > kidney.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 433-440)

Pages:

798-804

Citation:

Online since:

January 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] S. K. WALIA, S. S. ALI, R. BRAR, Identification and mutagenicity of dinitrotoluene metabolites produced by strain Pseudomonas putida OU83, Pesticide Biochemistry and Physiology, 73, 2002, pp.131-139.

DOI: 10.1016/s0048-3575(02)00102-5

Google Scholar

[2] Y. B. CHENG, Z. Y. ZHANG, The combined effect of trinitrotoluene and 2, 4-dinitrotoluene on deformation of spermatozoa in mice, J Labour Med, 13(4), 1996, pp.212-214.

Google Scholar

[3] N. L. PONTIUB, SDWA mandates drinking water contaminant candidate list, Opflow, 23(9), 1997, pp.8-9.

DOI: 10.1002/j.1551-8701.1997.tb02070.x

Google Scholar

[4] A. HAGENAARS, D. KNAPEN, I. J. MEYER, Toxicity evaluation of perfluorooctane sulfonate (PFOS) in the liver of common carp (Cyprinus carpio), Aquatic Toxicology, 88, 2008, p.155–163.

DOI: 10.1016/j.aquatox.2008.04.002

Google Scholar

[5] A. E. GIRLING, D. PASCOPE, C. R. JANSSEN, Development of methods for evaluating toxicity to freshwater ecosystems, Ecotoxicology and Environmental Safety, 45, 2000, pp.148-172.

Google Scholar

[6] J. B. XU, T. S. JING, W. PAULI, S. BERGER, Quantitative Structure-Activity Relationships for the Toxicity of Nitrobenzenes to Trtrahymena Thermophila, Journalof environ scien and health, 37A(4), 2002, pp.563-571.

DOI: 10.1081/ese-120003237

Google Scholar

[7] B. B. ALAIN, R. FRANCIS, Aquatic ecotoxicology: Fundation Concepts and Methodologies. Florida: CRC Press, 2000, p.149–161.

Google Scholar

[8] S. R. DING, Technology and Method of Environmental Biology. Nanjing: Nanjing University Press, 1989, p.134–141.

Google Scholar

[9] R. K. SCOPE, Protein Purification[M]. N Y: Academic Press, 1982: 265–275.

Google Scholar

[10] J. B. XU, T. S. JING, Effect of P-NBrB and P-NAn on ATPase of Carp Tissues, Microchemic al Jouroul, 52, 1995, pp.188-193.

Google Scholar

[11] Y. RONG, J. R. DAVID, Biomarkers for rainbow trout (Oncurhynchus mykiss) and coho salmon (Oncorhynchus kisutch) exposed to 1, 2, 4, 5-Tetrachlorobenzene and Tetrachloroguaiacol, Chemosphere, 34, 1997, pp.1167-1180.

DOI: 10.1016/s0045-6535(97)00416-5

Google Scholar

[12] D. DESAIAH, A. W. HAYES, I. K. HO, Some effects of selenium status on inorganic mercury metabolism in the rat, Toxicol. Appl. Pharmacol., 40, 1977, pp.71-82.

Google Scholar

[13] A. SCHWARTZ, I. F. BONNER, A. KLEINZELLER, Current Topics in Membrane and Transport. N Y: Academic Press, 1972, pp.1-80.

Google Scholar

[14] J. B. XU, T. S. JING, L. LIANG, Toxicity effects for Oryzias latipes exposed to 1, 4-Dinitrobenzene, Chemical Research in Chinese Universities, 21(2), 2005, pp.154-157.

Google Scholar

[8] 10±0. 45.

Google Scholar

[24] 0±4. 0 24.

Google Scholar

[1] 137±0. 023.

Google Scholar

[2] 688 (2. 476~2. 900) 48.

Google Scholar

830±0. 024.

Google Scholar

[2] 064 (1. 850~2. 278) 72.

Google Scholar

661±0. 019.

Google Scholar

[1] 484 (0. 912~2. 056) 96.

Google Scholar

479±0. 020.

Google Scholar

[1] 352 (1. 180~1. 524) 112.

Google Scholar

[1] 341 (1. 120~1. 562) TABLE II. Effect of 2, 6-DNT on C. carpio growth (average length mm, n = 15) concentration (mg/L) 0d 10d (% increase length) 20d (% increase length) 30d (% increase length) control.

Google Scholar

[7] 92±0. 44.

Google Scholar

[9] 04±0. 40 (14. 1).

Google Scholar

[10] 37±0. 47 (14. 7).

Google Scholar

[11] 49±0. 49 (10. 8) solvent control (<0. 0001).

Google Scholar

[7] 96±0. 36.

Google Scholar

[9] 11±0. 37 (14. 4).

Google Scholar

[10] 39±0. 49 (14. 1).

Google Scholar

[11] 51±0. 47 (10. 8).

Google Scholar

[7] 99±0. 34.

Google Scholar

[9] 20±0. 39 (15. 1).

Google Scholar

[10] 14±0. 50 (10. 2).

Google Scholar

[11] 03±0. 50 (8. 78).

Google Scholar

[7] 94±0. 40.

Google Scholar

[9] 05±0. 42 (14. 0).

Google Scholar

[9] 89±0. 57 (9. 28) *10. 68±0. 55 (7. 99).

Google Scholar

[8] 00±0. 39.

Google Scholar

[8] 65±0. 50 (8. 12) *9. 33±0. 46 (7. 86) *10. 10±0. 46 (8. 25).

Google Scholar

[7] 98±0. 31.

Google Scholar

[8] 51±0. 44 (6. 64) *9. 22±0. 45 (8. 34) *9. 64±0. 48 (4. 56) TABLE III. The results of accumulative toxicity test of 2, 6-DNT for C. carpio time (d) 9 11 14 16 19 21 23 concentration (mg/L).

Google Scholar

[1] 065.

Google Scholar

[1] 065 accumulative dose (mg/L).

Google Scholar

[1] 137.

Google Scholar

[1] 688.

Google Scholar

[2] 125.

Google Scholar

[2] 657 ln of Accumulative dose (mg/L) -0. 851 -0. 528 -0. 112.

Google Scholar

977 death probit.

Google Scholar

[3] 72.

Google Scholar

[4] 16.

Google Scholar

[4] 48.

Google Scholar

[4] 75.

Google Scholar

[5] 00.

Google Scholar

[5] 25.

Google Scholar

[5] 39 dead rate (%) 10 20 30 40 50 60 65 TABLE IV. Na+/K+-ATPase activity in gill, kidney and liver for C. carpio exposed to 2, 6-DNT concentration Na+/K+-ATPase activity (nmol pi/mg/h, mean±s) gill percentage (%) inhibitation percentage (%) kidney percentage (%) inhibitation percentage (%) liver percentage (%) inhibitation percentage (%) control.

DOI: 10.1787/451478345276

Google Scholar

[26] 80±1. 22.

Google Scholar

[45] 27±1. 31.

Google Scholar

[79] 34± 1. 23 solvent control.

Google Scholar

[26] 96±1. 33.

Google Scholar

[45] 21±1. 29.

Google Scholar

[79] 31± 1. 25.

Google Scholar

[26] 23±1. 29.

Google Scholar

[87] 9.

Google Scholar

[12] 1.

Google Scholar

[41] 79±1. 35.

Google Scholar

[92] 3.

Google Scholar

[73] 51± 1. 24.

Google Scholar

[92] 7.

Google Scholar

[24] 15±1. 23.

Google Scholar

[80] 1.

Google Scholar

[19] 9.

Google Scholar

[37] 23±1. 22.

Google Scholar

[82] 2.

Google Scholar

[17] 8.

Google Scholar

[67] 51± 1. 35.

Google Scholar

[85] 1.

Google Scholar

[14] 9.

Google Scholar

[20] 77±1. 11.

Google Scholar

[67] 5.

Google Scholar

[32] 5.

Google Scholar

[33] 69±1. 51.

Google Scholar

[74] 4.

Google Scholar

[25] 6.

Google Scholar

[60] 31± 1. 45.

Google Scholar

[76] 0.

Google Scholar

[24] 0.

Google Scholar

[18] 16±1. 10.

Google Scholar

[57] 8.

Google Scholar

[42] 2.

Google Scholar

[30] 05±1. 30.

Google Scholar

[66] 4.

Google Scholar

[33] 6.

Google Scholar

[56] 17± 1. 39.

Google Scholar

[70] 8.

Google Scholar

[29] 2.

Google Scholar

[14] 27±1. 77.

Google Scholar

[43] 2.

Google Scholar

[56] 8.

Google Scholar

[25] 83±1. 13.

Google Scholar

[57] 1.

Google Scholar

[42] 9.

Google Scholar

[45] 39± 1. 31.

Google Scholar

[57] 0.

Google Scholar

[43] 0.

Google Scholar

[12] 48±1. 98.

Google Scholar

[36] 6.

Google Scholar

[63] 4.

Google Scholar

[22] 19±1. 09.

Google Scholar

[49] 0.

Google Scholar

[50] 9.

Google Scholar

[34] 29± 1. 27.

Google Scholar

[43] 2.

Google Scholar

[56] 8.

Google Scholar

[7] 09± 0. 76.

Google Scholar

[16] 5.

Google Scholar

[83] 5.

Google Scholar

[14] 00±0. 91.

Google Scholar

[30] 9.

Google Scholar

[69] 1.

Google Scholar

[21] 14± 1. 23.

Google Scholar

[26] 6.

Google Scholar

[73] 4.

Google Scholar