Preparation and Analysis of Sputtered Cu2ZnSnSe4 Thin Films

Article Preview

Abstract:

Cu2ZnSnSe4 (CZTSe) thin films with the advantages of low cost, abundance in resources, and the suitable band-gap of 0.9~1.1 eV have been the potential materials for solar cells, though the Cu(In,Ga)Se2 thin films have received most of the attentions. In this study, CZTSe thin films were prepared by direct-current (D.C.) sputtering using three self-made CZTSe targets in different compositions. The sputtered films displayed a preferred orientation in (112) by the X-ray diffraction analysis. The films were also characterized by field-emission scanning electron microscopy and energy dispersion spectroscopy. The films had the band-gap of 0.8~1.08 eV analyzed by absorption spectroscopy. CZTSe films were p-type and had a low electrical conductivity of 10-3 ohm-cm and a high carrier concentration of 1020~1021 cm-2.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 463-464)

Pages:

602-606

Citation:

Online since:

February 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] I. Repins, M. A. Contreras, B. Egaas, C. DeHart, J. Scharf, C. L. Perkins, B. To and R. Noufi, Prog. Photovolt: Res. Appl. 16 (2008), p.235.

DOI: 10.1002/pip.822

Google Scholar

[2] H. Matsushita, T. Maeda, A. Katsui and T. Takizava, J. Cryst. Growth 208 (2000), p.416.

Google Scholar

[3] H. Katagiri, K. Jimbo, W. S. Maw, K. Oishi, M. Yamazaki, H. Araki and A. Takeuchi, Thin Solid Films 517 (2009), p.2455.

DOI: 10.1016/j.tsf.2008.11.002

Google Scholar

[4] K. Jimbo, R. Kimura, T. Kamimura, S. Yamada, W. S. Maw, H. Araki, K. Oishi and H. Katagiri, Thin Solid Films 515 (2007), p.5997.

DOI: 10.1016/j.tsf.2006.12.103

Google Scholar

[5] H. Katagiri, K. Jimbo, S. Yamada, T. Kamimura, W. S. Maw, T. Fukano, T. Ito and T. Motohiro, Appl. Phys. Express (2008) 041201-1.

DOI: 10.1143/apex.1.041201

Google Scholar

[6] G. Zoppi, I. Forbes, R. W Miles, P. J. Dale, J. J. Scragg and L. M. Peter, Prog. Photovolt: Res. Appl. 17 (2009), p.315.

Google Scholar

[7] T. K. Todorov, K. B. Reuter and D. B. Mitzi, Adv. Mater. 22 (2010), p. E156.

Google Scholar

[8] G. Suresh Babu, Y. B. Kishore Kumar, P. Uday Bhaskar and Sundara Raja Vanjari, Sol. Energ. Mat. Sol. C. 94 (2010), p.221.

Google Scholar

[9] O. Volobujeva, J. Raudoja,E. Mellikov, M. Grossberg, S. Bereznev and R. Traksmaa, J. Phys. Chem. Solids, 70 (2009), p.567.

DOI: 10.1016/j.jpcs.2008.12.010

Google Scholar

[10] R. A. Wibowo, W. S. Kim, E. S. Lee, B. Munir and K. H. Kim, J. Phys. Chem. Solids 68 (2007), p. (1908).

Google Scholar

[11] H. Araki, Y. Kubo, A. Mikaduki, K. Jimbo, W. S. Maw, H. Katagiri, M. Yamazaki, K. Oishi and A. Takeuchi, Sol. Energ. Mat. Sol. C. 93 (2009), p.996.

DOI: 10.1016/j.solmat.2008.11.045

Google Scholar