Influence of Eu2+ Doped Contents on the Spectroscopic Features of Sr2-X MgSi2O7:xEu2+

Article Preview

Abstract:

Silicate-based Sr2-xMgSi2O7:xEu2+(x=0.01, 0.03, 0.05, 0.07) phosphors were synthesized by the high temperature solid-state reaction method. Phase purity and crystal structure of the phosphors were characterized using X-ray diffraction spectrometer. The optical excitation and emission spectra of Eu2+ ion were measured using luminescence spectrometer and fluorescence spectrophotometer. The emission spectra showed a strong blue luminescence peaked around 470 nm, corresponds to the 4f65d1 →4f7 transition on Eu2+. Two different average decay time confirmed that the Eu2+ cations may occupy in two different lattice sites and presents different spectroscopic features. With a broad absorption band extending from 224 to 450 nm, it is suggestive that the phosphors have a potential application in UV-LED chips (360-400 nm).

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 476-478)

Pages:

1232-1236

Citation:

Online since:

February 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] X. B. Yu, C.L. Zhou, X. G. He, Z. F. Peng, S. P. Mater. Lett. 58, 1087 (2004).

Google Scholar

[2] T. Y. Peng, H. P. Yang, X.L. Pu, B. Hu, Z. C. Jiang, C. H. Yan, Mater. Lett. 58, 352 (2004).

Google Scholar

[3] X. H. Tan. J. Alloy. Compd. 477, 648 (2009).

Google Scholar

[4] W. Pan, G. L. Ning, X. Zhang, J. Wang, Y. Lin, J. W. Ye, J. Lumin. 128, 1975 (2008).

Google Scholar

[5] T. Aitasalo, J. Hassinen, J. Holsa, T. Laamanen, M. Lastusaari, M. Malkamaki, J. Rare Earths, 27, 529 (2009).

DOI: 10.1016/s1002-0721(08)60283-5

Google Scholar

[6] X. G. Zhang, X. P. Tang, J.L. Zhang, H. H. Wang, J. X. Shi, M. L. Gong, Powder Technol. 204, 263 (2010).

Google Scholar

[7] C. S. Shi, Y. B. Fu, B. Liu, G. B. Zhang, Y. H. Chen, Z. M. Qi, X. X. Luo. J. Lumin.122-123, (2007)

Google Scholar

[8] H. Furusho, J. Holsa, T. Laamanen, M. Lastusaari, J. Niittykoski, Y. Okajima, A. Yamamoto, J. Lumin.128, 881 (2008).

DOI: 10.1016/j.jlumin.2007.11.047

Google Scholar

[9] M. Zhang, J. Wang, W. J. Ding, Q. H. Zhang, Q. Su, Opt. Mate. 30, 571 (2007).

Google Scholar

[10] V. Bachmann, C. Ronda, O. Oeckler, W. Schnick, A. Meijerink, Chem. Mater. 21, 316 (2008).

Google Scholar

[11] Q. Fei, C. K. Chang, D. Mao, J. Alloy. Compd. 390, 133 (2005).

Google Scholar

[12] L.G. Uitert, J. Lumin. 29, 1 (1984)

Google Scholar

[13] C. H. Park, Y. N. Choi, J. Solid State Chem. 182, 1884 (2009).

Google Scholar

[14] S. H. M. Poort, G. Blasse, J. Lumin. 72-74, 247 (1997). Fig. 1 The XRD patterns of Sr2-xMgSi2O7:xEu2+(x=0.01, 0.03, 0.05, 0.07) and JCPDs card No 75-1736. Fig.2 Excitation spectra of the 467nm emission for Sr1.95MgSi2O7:0.05Eu2+ (a) and emission spectra of Sr2-xMgSi2O7:xEu2+(x=0.01, 0.03, 0.05, 0.07) under 377nm excitation at room temperature; inset is the representative Gaussian fitting presented for Sr1.95MgSi2O8:0.05 Eu2+ (b). Fig. 3 The luminescence decay curves of Eu1(a) and Eu2(b) for Sr1.95MgSi2O8:0.05 Eu2+ Fig.4 CIE chromaticity coordinates of Sr2-xMgSi2O7:xEu2+(x=0.01, 0.03, 0.05, 0.07) phosphors

DOI: 10.2172/251653

Google Scholar