Sulfonation of Waste High Impact Polystyrene from Food Packaging as a Polymeric Flocculant

Article Preview

Abstract:

Sulfonation of waste high impact polystyrene from commercial food packaging was studied in this work. The obtained sulfonated polystyrene was characterized by using Fourier Transformed Infrared spectroscopy. Effect of the reaction time and temperature on the degree of sulfonation was observed. Waste high impact polystyrene resin from food packaging showed degree of sulfonation at 72.2% level. This degree of sulfonation was lower than the same reaction on pure polystyrene and pure high impact polystyrene, which showed degree of sulfonation at 97.7% and 85.2% level, respectively. Simulation of flocculation test using kaolin suspension was conducted to evaluate the application of sulfonated polystyrene as a polymeric flocculant.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

426-431

Citation:

Online since:

March 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] M. Shimao: Current Opinion in Biotechnology, Vol. 12 (2001), pp.242-247.

Google Scholar

[2] A. C. Sánchez, Simon R. Collinson: Eur. Polym. J., Vol. 47 (2011), p.1970-(1976).

Google Scholar

[3] Z. Zhibo, S. Nishio, Y. Morioka, A. Ueno, H. Ohkita, Y. Tochihara, T. Mizushima, and N. Kakuta: Catalysis Today, Vol. 29 (1996), pp.303-308.

DOI: 10.1016/0920-5861(95)00296-0

Google Scholar

[4] E. Tsuchida, K. Yamamoto, E. Shouji and A. Haryono: Chem. Commun., (1996), p.2091-(2092).

Google Scholar

[5] C. Shin: J. Colloid and Interface Sci., Vol. 302, (2006), pp.267-271.

Google Scholar

[6] K. Huang, L.H. Tang, Z.B. Zhu, C.F. Zhang: Polym. Degrad. Stability, Vol. 89 (2005), pp.312-316.

Google Scholar

[7] A. Haryono, N Astrini S.R. Wuryaningsih, Proceedings 4th National Symposium of Indonesian Polymer Association (HPI), Jakarta. 8th July (2003).

Google Scholar

[8] I. Bekri-Abbes, S. Bayoudh, M. Baklouti: Desalination Vol. 204 (2007), pp.198-203.

DOI: 10.1016/j.desal.2006.03.540

Google Scholar

[9] Y. Sato, Y. Koder, J. Goto and Y. Matsui: Polym. Degrad. Stability, Vol. 78 (2002), pp.315-322.

Google Scholar

[10] R. K. Balakrishnan, C. Guria: Polym. Degrad. Stability, Vol. 92 (2007), pp.1583-1591.

Google Scholar

[11] A. Karaduman, E.H. Simsek, B.C. Icek and A. Y. Bilgesu: J. Anal. Appl. Pyrolysis, Vol. 60 (2001), pp.179-186.

Google Scholar

[12] W. W. Sulkowski, K. Nowak, A. Sulkowska: Pure Appl. Chem., Vol. 81 (2009), pp.2417-2424.

Google Scholar

[13] Y. A. Elabd, E. Napadensky: Polymer Vol. 45 (2004), p.3037.

Google Scholar

[14] H-J. Kim, H-J. Kweon, Y-C. Eun, S-Y. Cho: U.S. Patent No. 7, 244, 791 (2007).

Google Scholar

[15] Harry W. Gibson, F. C. Bailey: Macromolecules, Vol. 13 (1980), p.34–41.

Google Scholar