Synthesis and Thermal Characterization of Co-Doped ZnO Nanocomposites Prepared by Sol-Gel Method

Article Preview

Abstract:

Polyparaphenylene/Zn0.925Co0.075O(PPP/Zn0.925Co0.075O) nanocomposites were synthesized by using a sol-gel method and their thermal conductivity properties were measured. The XRD pattern of Zn0.925Co0.075O shows the single phase wurtzite structure. The SEM images show that the lighter-contrast area is PPP and the dark-contrast area is the polycrystalline of Zn0.925Co0.075O. The increase in the band edge is a clear indication for the incorporation of Co inside the ZnO lattice. The observation of three additional absorption peaks provided evidence that the 3d7 high-spin configuration of Co2+ under the tetrahedral crystal field was probably formed by neighboring O2- ions. With the increase of the PPP content, the thermal conductivity of nanocomposite samples is smaller than those of pure Zn0.925Co0.075O. Due to the high density of interfaces and grain boundaries present in the nanocomposites, the scattering of phonon across a broad wavelength spectrum was enhanced. This suppressed the lattice thermal conductivity of the nanocomposites significantly.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 512-515)

Pages:

1753-1756

Citation:

Online since:

May 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Y.H. Jeong, S.J. Han, J.H. Park, Y.H. Lee, J. Magn. Magn. Mater. 272 (2004) 1976.

Google Scholar

[2] Z. Jin, T. Fukumura, M. Kawasaki, K. Ando, H. Saito, T. Sekiguchi, Y.Z. Yoo, M. Murakami, Y. Mastsumoto, T. Hasegawa, H. Koinuma, Appl. Phys. Lett. 78 (2001) 3824.

DOI: 10.1063/1.1377856

Google Scholar

[3] K. Ueda, H. Tabata, T. Kawai, Appl. Phys. Lett. 79 (2001) 988.

Google Scholar

[4] S.W. Jung, S.J.An, G.C. Yi, C.W. Jung, S.J. Lee, S.Cho,Appl. Phys. Lett. 80 (2002) 4561.

Google Scholar

[5] T. Tsubota, M. Ohtaki, K. Eguchi, and H. Arai, Proceedings of the 16th International Conference on Thermoelectrics (1997), p.240.

Google Scholar

[6] T. Tsubota, M. Ohtaki, K. Eguchi, and H. Arai, J. Mater. Chem. 7 (1997) 85.

Google Scholar

[7] G.A. Slack, Phys. Rev. B 6 (1972) 3791.

Google Scholar

[8] M. Ohtaki, T. Tsubota, and K. Eguchi, Proceedings of the 17th International Conference on Thermoelectrics (1998), p.610.

Google Scholar

[9] T. Tsubota, M. Ohtaki, K. Eguchi, and H. Arai, J. Mater. Chem. 8 (1998) 409.

Google Scholar

[10] P. Kovacic, and A. Kyriakis, J. Am. Chem. Soc. 85 (1963) 454.

Google Scholar

[11] P. Kovacic, and F. W. Koch, J. Org. Chem. 28 (1963) 1864.

Google Scholar

[12] S. Chu, T. Yan, S.J. Chen, J. Mater. Sci. Lett. 19 (2000) 349.

Google Scholar

[13] Z. Xiong, X. H.Chen, X. Y.Huang, S. Q.Bai, and L. D. Chen, Acta Materialia, 58 (2010) 3995.

Google Scholar

[14] Y. Z. Pei, A. Andrew, and G. J. Snyder, Advanced Energy Materials, 1 (2011) 291.

Google Scholar

[15] P.V. Radovanovic, D.R. Gamelin, Phys. Rev. Lett. 91 (2003) 157202.

Google Scholar

[16] S. Deka, P.A. Joy, Chem. Mater. 17 (2005) 6507.

Google Scholar

[17] M. Bouloudenine, N. Viart, S. Colis, and A. Dinia, Chem. Phys. Lett. 397 (2004) 73

Google Scholar

[18] P. Koidl, Phys. Rev. B 15 (1977) 2493

Google Scholar

[19] X. Q. Qiu, L. P. Li, and G. S. Li, Appl. Phys. Lett. 88 (2006) 114103.

Google Scholar

[20] W. Kim, J. Zide, A. Gossard, D. Klenov, and S. Stemmer, Phys. Rev. Lett. 96 (2006) 045901.

Google Scholar

[21] E. T. Swartz, R. O. Pohl, Rev. Mod. Phys. 61 (1989) 605.

Google Scholar

[22] J. C. Grunlan, Y. S. Kim, S. Ziaee, X. Wei, B. A. Magid, and K. Tao, Macromol. Mater. Eng., 291 (2006) 1035.

DOI: 10.1002/mame.200690016

Google Scholar

[23] L. Liu, and J. C. Grunlan, Adv. Funct. Mater., 17 (2007) 2343.

Google Scholar