[1]
Cregan P D,Scott B J.1998.Siol acidification- an agricultural and environmental problem[A].In Pratley J E and Robertson , and low pH. Plant Physiol. 46:53-56
Google Scholar
[2]
Lehmann J, da Silva Jr JP, Rondon M, Cravo MS, Greenwood J, Nehls T, Steiner C, Glaser B (2002). Slash and char—a feasible alternative for soil fertility management in the central Amazon Proceedings of the 17th World Congress of Soil Science Bangkok, Thailand. Paper no 449
Google Scholar
[3]
Zwieten L Van, Kimber S, Morris S, et al. Effects of biochar from slow pyrolysis of papermill waste on agronomic performance and soil fertility[J].Plant and Soil,2010,327:235-246.
DOI: 10.1007/s11104-009-0050-x
Google Scholar
[4]
Masulili A, Utomo W H, Syechfani M S. Rice husk biochar for rice based cropping system in acid soil 1. The characteristics of rice husk biochar and Its Influence on the properties of acid sulfate soils and rice growth in west Kalimantan, Indonesia[J].Journal of Agricultural Science,2010,2(1):39-47.
DOI: 10.5539/jas.v2n1p39
Google Scholar
[5]
Novak J M, Lima I, Baoshan Xing, et al. Characterization of designer biochar produced at different temperatures and their effects on a loamy sand[J].Annals of Environmental Science,2009,3: 195-206.
Google Scholar
[6]
Cheng C-H, Lehmann J, Thies J E, et al. Oxidation of black carbon by biotic and abiotic processes[J].Organic Geochemistry,2006,37: 1477-1488.
DOI: 10.1016/j.orggeochem.2006.06.022
Google Scholar
[7]
Novak J M, Busscher W J, Laird D L, et al. Impact of biochar amendment on fertility of a southeastern coastal plain soil[J].Soil Science,2009,174(2):105-112. ANTAL M J, GRONLI M. The art, science, and technology of charcoal production[J]. Industrial and Engineering Chemistry Research, 2003, 42(8): 1619-1640.
DOI: 10.1097/ss.0b013e3181981d9a
Google Scholar
[8]
Yang X-H, Wu Z-p, Zhang G-D.Correlation heteen characteristics of root and those of aerial parts of soybean varieties.Acta Agron Sin,2000,28(1):72-75(in Chinese with English abstract)
Google Scholar
[9]
Novak J M, Busscher W J, Laird D L, et al. Impact of biochar amendment on fertility of a southeastern coastal plain soil[J].Soil Science,2009,174(2):105-112.
DOI: 10.1097/ss.0b013e3181981d9a
Google Scholar
[10]
Ramanathan V, Carmichael G (2008) Global and regional climate changes due to black carbon. Nature Geoscience 1:221–227
DOI: 10.1038/ngeo156
Google Scholar
[11]
Spokas KA, Reicosky DC (2009) Impacts of sixteen different biochars on soil greenhouse gas production. Ann Environ Sci 3:179–193
Google Scholar
[12]
Hua L, Wu W, Liu Y, McBride MB, Chen Y (2009) Reduction of nitrogen loss and Cu and Zn mobility during sludge composting with bamboo charcoal amendment. Environ Sci Pollut Res 16:1–9
DOI: 10.1007/s11356-008-0041-0
Google Scholar
[13]
Lehmann J, Kern D, German L, McCann J, Martins GC, Moreira L (2003b) Soil fertility and production potential. Chapter 6. In: Lehmann J, Kern DC, Glaser B, Woods WI (eds) Amazonian dark earths: origin, properties, management. Kluwer Academic, Dordrecht, p.105–124
DOI: 10.1007/1-4020-2597-1_6
Google Scholar
[14]
Wardle DA, Nilsson M-C, Zackrisson O (2008) Fire-derived charcoal causes loss of forest humus. Science 320:629
DOI: 10.1126/science.1154960
Google Scholar
[15]
Asai H, Samson BK, Stephan HM, Songyikhangsuthor K,Inoue Y, Shiraiwa T, Horie T (2009) Biochar amendment techniques for upland rice production in Northern Laos: soil physical properties, leaf SPAD and grain yield. Field Crops Res 111:81–84
DOI: 10.1016/j.fcr.2008.10.008
Google Scholar
[16]
Kwon S, Pignatello JJ (2005) Effects of natural organic substances on the surface and adsorptive properties of environmental black carbon (char): pseudo pore blockage by model lipid components and its implications for N2-probed surface properties of natural sorbents. Environ Sci Technol 39:7932–7939
DOI: 10.1021/es050976h
Google Scholar
[17]
Thies J, Suzuki K (2003) Amazonian dark earths biological measurement. Chapter 16. In: Lehmann J, Kern DC, Glaser B, Woods WI (eds) Amazonian dark earths origin properties management. Kluwer Academic, Dordrecht, p.287–332
DOI: 10.1007/1-4020-2597-1_16
Google Scholar
[18]
Van Gestel M, Merckx R, Vlassak K (1993) Microbial biomass responses to soil drying and rewetting: the fate of fast- and slow-growing microorganisms in soils from different climates. Soil Biol Biochem 25:109–123
DOI: 10.1016/0038-0717(93)90249-b
Google Scholar
[19]
Bornemann LC, Kookana RS, Welp G (2007) Differential sorption behaviour of aromatic hydrocarbons on charcoals prepared at different temperatures from grass and wood. Chemosphere 67:1033–1204
DOI: 10.1016/j.chemosphere.2006.10.052
Google Scholar
[20]
Jenkinson DS, Ayanaba A (1977) Decomposition of carbon-14 labelled plant material under tropical conditions. Soil Sci Soc Am J 41:912–915
DOI: 10.2136/sssaj1977.03615995004100050020x
Google Scholar
[21]
Wardle DA, Nilsson M-C, Zackrisson O (2008) Fire-derived charcoal causes loss of forest humus. Science 320:629
DOI: 10.1126/science.1154960
Google Scholar
[22]
Steiner C, Das KC, Garcia M, Forester B, Zech W (2008b) Charcoal and smoke extract stimulate the soil microbial community in a highly weathered xanthic Ferralsol. Pedobiologia 51:359–366
DOI: 10.1016/j.pedobi.2007.08.002
Google Scholar
[23]
Noguera Noguera, D., Rondon, M., Laossi, K.-R., Hoyos, V., Lavelle, P., de Carvalho, M.H.C., Barot, S., 2010. Contrasted effect of biochar and earthworms on rice growth and resource allocation in different soils. Soil Biology and Biochemistry 42, 1017-1027.
DOI: 10.1016/j.soilbio.2010.03.001
Google Scholar
[24]
Van Zwieten, L., Kimber, S., Morris, S., Downie, A., Berger, E., Rust, J., Scheer, C., 2010b. Influence of biochars on flux of N2O and CO2 from Ferrosol. Australian Journal of Soil Research 48, 555-568.
DOI: 10.1071/sr10004
Google Scholar
[25]
Glaser B, Lehmann J, Zech W (2002) Ameliorating physical and chemical properties of highly weathered soils in the tropics with charcoal—a review. Biol Fertil Soils 35: 219–230
DOI: 10.1007/s00374-002-0466-4
Google Scholar