Site Preference and Elastic Properties of 3d Transition Metals Alloying Addition in Ductility YAg Alloys

Article Preview

Abstract:

First-principles supercell calculations based on density functional theory were performed to study the site preference behavior and elastic properties of 3d (Ti-Cu) transition-metal elements in B2 ductility YAg alloy. It is found that Ti occupies the Y sublattice, while V, Cr, Co, Fe, Ni and Cu tend to substitute for Ag site. All alloying elements can decrease the lattice parameters of Y8Ag8, among which Y7Ag8Ti shows the largest change. Furthermore, the calculated elastic constants show that Cr, Fe, Co and Cu can improve the ductility of YAg alloy, and Y8Ag7Fe presents the most ductility among these alloy, while Ti and Ni alloying elements reduce the ductility of YAg alloy, especially, V transforms ductile into brittle for YAg alloy. In addition, both V and Ni can increase the hardness of YAg alloy, and Y8Ag7V is harder than Y8Ag7Ni.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 535-537)

Pages:

1000-1004

Citation:

Online since:

June 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Jr.K.A. Gschneidner, A.M. Russell, A.Pecharsky, and et al: Nat. Mater. Vol. 2(2003), p.587

Google Scholar

[2] Z.Zhang, A.M. Russell, S.B. Biner, Jr.K.A. Gschneidner and C.C.H.Lo: Intermetallics. Vol. 13(2005), p.559

Google Scholar

[3] G.H. Cao, D.Shechtman, D.M.Wu, A.T. Becker, L.S. Chumbley, T.A. Lograsso, A.M. Russell and Jr. K.A. Gschneidner: Acta Mater. Vol.55 (2007), p.3765

DOI: 10.1016/j.actamat.2007.02.025

Google Scholar

[4] A.M. Russell, Z.Zhang, T.A. Lograsso, C.C.H.Lo, A.O. Pecharsky and J.R. Morris: Acta Mater. Vol.52 (2004), p.4033

Google Scholar

[5] T.Kim, K.T. Hong and K.S. Lee: Intermetallics. Vol.11 (2003), p.33

Google Scholar

[6] Y.R.Wu, W.Y.Hu and S.H. Han: Physica B. Vol.403 (2008), p.3792

Google Scholar

[7] R.D. Field, D.F. Lahrman and R.Darolia: Acta Mater. Vol.39 (1991), p.2961

Google Scholar

[8] P.Lazar and R.Podloucky: Phys Rev B. Vol.73 (2006), p.104114

Google Scholar

[9] G.Lresse and J.Furhtmuller: Phys. Rev. B. Vol. 54 (1996), p.11169

Google Scholar

[10] J.P. Perdew and Y.Wang: Phys. Rev. B. Vol. 45 (1992), p.13244

Google Scholar

[11] P.E. Blochl: Phys. Rev. B. Vol. 50(1994), p.17953

Google Scholar

[12] J.R. Morris, Y.Ye, Y.B. Lee, B.N. Harmon, Jr.K.Gschneidner and A.M. Russell: Acta Mater. Vol. 52(2004), p.4849

Google Scholar

[13] Y.R Wu and W.Y.Hu: Eur.Phys J.B. Vol. 60(2007), p.75

Google Scholar

[14] D.G. Pettifor: Mater. Sci.Tech. Vol, 8(1992), p.345

Google Scholar

[15] S.Xie, Jr.K.Gschneidner and A.M Russell: Scripta Materialia. Vol. 59(2008), p.810

Google Scholar

[16] S.F. Pugh: Philos. Mag. Vol. 45(1954), p.823

Google Scholar

[17] K.Chen, L.R. Zhao, J.Rodgers and J.S. Tse: J. Phys.D: Appl. Phys. Vol. 36(2003), p.2725

Google Scholar

[18] M.H. Yoo, T.T. Akasugi, S.Hanada and O.Izumi: Mater. Trans. JIM. Vol. 31(1990), p.435

Google Scholar