Atomistic Simulation for the Site Preference of Tb3(Fe28-XCoX)V1.0 Compounds

Article Preview

Abstract:

The effect of cobalt on the structural properties of intermetallic Tb3(Fe28-xCox)V1.0 with Nd3(Fe,Ti)29 structure has been studied by using interatomic pair potentials obtained through the lattice inversion method. Calculated results show that the order of site preference of cobalt is 8j(Fe8), 4e(Fe11) and 2c(Fe1) which is in good agreement with experimental results. And the calculated lattice constants coincide quite well with experimental values. All these prove the effectiveness of interatomic pair potentials obtained through the lattice inversion method in the description of rare-earth materials.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 535-537)

Pages:

1015-1018

Citation:

Online since:

June 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Han X.F., H.G. Pan, et al. (1997). "Syntheses and magnetic properties of Tb3Fe29-xCrx compounds." Physical Review B 56(14): 8867-8875.

Google Scholar

[2] Courtois D., H.S. Li, et al. "Determination of the easy magnetisation direction by X-ray diffraction analysis at room temperature in the R3(Fe,M)29 compounds: R = Pr, Nd, Sm, Gd, Tb, Dy and Y; M = Ti and V." Solid State Communications 98(6): 565-570.

DOI: 10.1016/0038-1098(95)00838-1

Google Scholar

[3] Efthimiadis, K. G., C. Sarafidis, et al. (2007). "Existence and properties of Co-rich 3:29-type of compounds synthesized with heavy rare earths." Journal of Magnetism and Magnetic Materials 316(2): e458-e461.

DOI: 10.1016/j.jmmm.2007.02.180

Google Scholar

[4] Huo, G., Z. Qiao, et al. (1999). "Structure and magnetic properties of Gd3(Fe0.665Co0.313Ti0.022)29." Journal of Alloys and Compounds 285(1–2): 216-220.

DOI: 10.1016/s0925-8388(98)00856-1

Google Scholar

[5] Kalogirou, O., C. Sarafidis, et al. (2001). "Structural and magnetic properties of Nd3(Fe1−xCox)27.7Ti1.3 (0≤x≤0.4) alloys." Journal of Alloys and Compounds 325(1–2): 59-66.

DOI: 10.1016/s0925-8388(01)01379-2

Google Scholar

[6] Wang, W., J. Wang, et al. (2003). "Structural and magnetic properties of Sm3(Fe1−xCox)29−yCry compounds." Journal of Alloys and Compounds 358(1–2): 12-16.

DOI: 10.1016/s0925-8388(03)00065-3

Google Scholar

[7] Kalogirou O., C. Sarafidis, et al. (2002). "Effects of Co substitution on structural and magnetic properties of R3(Fe1−xCox)29−yVy (R=Tb, Dy)." Journal of Magnetism and Magnetic Materials 247(1): 34-41.

DOI: 10.1016/s0304-8853(02)00103-8

Google Scholar

[8] Wang, Y., J. Shen, et al. (2001). "Theoretical investigation on site preference of foreign atoms in rare-earth intermetallics." Journal of Alloys and Compounds 319(1–2): 62-73.

DOI: 10.1016/s0925-8388(01)00909-4

Google Scholar

[9] Chen NX, Hao SQ, Yu W, et al., Phase stability and site preference of Sm(Fe,T) 12, J magn magn mater 233 (3): 169-180 aug (2001)

Google Scholar

[10] Han X.F., F.M. Yang, et al. (1997). "Synthesis and magnetic properties of novel compounds R3(Fe, T)29 (R=Y, Ce, Nd, Sm, Gd, Tb and Dy; T= V and Cr)" Journal of Applied Physics 81(11): 7450-7457.

DOI: 10.1063/1.365287

Google Scholar

[11] Gholizadeh, A., N. Tajabor, et al. (2011). "Anisotropy and FOMP in Tb3 (Fe28−xCox) V1.0 (x=0, 3 and 6) compounds." Physica B: Condensed Matter 406(18): 3465-3469.

DOI: 10.1016/j.physb.2011.06.025

Google Scholar

[12] Harris V.G., Q. Huang, et al. (1999). "Neutron diffraction and extended X-ray absorption fine structure studies of Pr3(Fe1-xCox)27.5Ti1.5 permanent magnet compounds." Magnetics, IEEE Transactions on 35(5): 3286-3288.

DOI: 10.1109/20.800500

Google Scholar

[13] Kalogirou O., C. Sarafidis, et al. (2006). "Influences of Co on structural and magnetic properties of R3(Fe1−xCox)29−yMy (R=rare earth metal, M=transition metal) intermetallic compounds." Journal of Alloys and Compounds 423(1–2): 4-9.

DOI: 10.1016/j.jallcom.2005.12.041

Google Scholar