Atomistic Simulation for the Site Preference of Tb3(Fe28-XCoX)V1.0 Compounds

Abstract:

Article Preview

The effect of cobalt on the structural properties of intermetallic Tb3(Fe28-xCox)V1.0 with Nd3(Fe,Ti)29 structure has been studied by using interatomic pair potentials obtained through the lattice inversion method. Calculated results show that the order of site preference of cobalt is 8j(Fe8), 4e(Fe11) and 2c(Fe1) which is in good agreement with experimental results. And the calculated lattice constants coincide quite well with experimental values. All these prove the effectiveness of interatomic pair potentials obtained through the lattice inversion method in the description of rare-earth materials.

Info:

Periodical:

Advanced Materials Research (Volumes 535-537)

Edited by:

Chunxiang Cui, Yali Li and Zhihao Yuan

Pages:

1015-1018

Citation:

J. Sun et al., "Atomistic Simulation for the Site Preference of Tb3(Fe28-XCoX)V1.0 Compounds", Advanced Materials Research, Vols. 535-537, pp. 1015-1018, 2012

Online since:

June 2012

Export:

Price:

$38.00

[1] Han X.F., H.G. Pan, et al. (1997). Syntheses and magnetic properties of Tb3Fe29-xCrx compounds., Physical Review B 56(14): 8867-8875.

[2] Courtois D., H.S. Li, et al. Determination of the easy magnetisation direction by X-ray diffraction analysis at room temperature in the R3(Fe, M)29 compounds: R = Pr, Nd, Sm, Gd, Tb, Dy and Y; M = Ti and V., Solid State Communications 98(6): 565-570.

DOI: https://doi.org/10.1016/0038-1098(95)00838-1

[3] Efthimiadis, K. G., C. Sarafidis, et al. (2007). Existence and properties of Co-rich 3: 29-type of compounds synthesized with heavy rare earths., Journal of Magnetism and Magnetic Materials 316(2): e458-e461.

DOI: https://doi.org/10.1016/j.jmmm.2007.02.180

[4] Huo, G., Z. Qiao, et al. (1999). Structure and magnetic properties of Gd3(Fe0. 665Co0. 313Ti0. 022)29., Journal of Alloys and Compounds 285(1–2): 216-220.

[5] Kalogirou, O., C. Sarafidis, et al. (2001). Structural and magnetic properties of Nd3(Fe1−xCox)27. 7Ti1. 3 (0≤x≤0. 4) alloys., Journal of Alloys and Compounds 325(1–2): 59-66.

DOI: https://doi.org/10.1016/s0925-8388(01)01379-2

[6] Wang, W., J. Wang, et al. (2003). Structural and magnetic properties of Sm3(Fe1−xCox)29−yCry compounds., Journal of Alloys and Compounds 358(1–2): 12-16.

DOI: https://doi.org/10.1016/s0925-8388(03)00065-3

[7] Kalogirou O., C. Sarafidis, et al. (2002). Effects of Co substitution on structural and magnetic properties of R3(Fe1−xCox)29−yVy (R=Tb, Dy)., Journal of Magnetism and Magnetic Materials 247(1): 34-41.

DOI: https://doi.org/10.1016/s0304-8853(02)00103-8

[8] Wang, Y., J. Shen, et al. (2001). Theoretical investigation on site preference of foreign atoms in rare-earth intermetallics., Journal of Alloys and Compounds 319(1–2): 62-73.

DOI: https://doi.org/10.1016/s0925-8388(01)00909-4

[9] Chen NX, Hao SQ, Yu W, et al., Phase stability and site preference of Sm(Fe, T) 12, J magn magn mater 233 (3): 169-180 aug (2001).

[10] Han X.F., F.M. Yang, et al. (1997). Synthesis and magnetic properties of novel compounds R3(Fe, T)29 (R=Y, Ce, Nd, Sm, Gd, Tb and Dy; T= V and Cr), Journal of Applied Physics 81(11): 7450-7457.

DOI: https://doi.org/10.1063/1.365287

[11] Gholizadeh, A., N. Tajabor, et al. (2011). Anisotropy and FOMP in Tb3 (Fe28−xCox) V1. 0 (x=0, 3 and 6) compounds., Physica B: Condensed Matter 406(18): 3465-3469.

DOI: https://doi.org/10.1016/j.physb.2011.06.025

[12] Harris V.G., Q. Huang, et al. (1999). Neutron diffraction and extended X-ray absorption fine structure studies of Pr3(Fe1-xCox)27. 5Ti1. 5 permanent magnet compounds., Magnetics, IEEE Transactions on 35(5): 3286-3288.

DOI: https://doi.org/10.1109/20.800500

[13] Kalogirou O., C. Sarafidis, et al. (2006). Influences of Co on structural and magnetic properties of R3(Fe1−xCox)29−yMy (R=rare earth metal, M=transition metal) intermetallic compounds., Journal of Alloys and Compounds 423(1–2): 4-9.

DOI: https://doi.org/10.1016/j.jallcom.2005.12.041