Tryptanthrin Sulfonate: Crystal Structure, Cytotoxicity and DNA Binding Studies

Article Preview

Abstract:

Tryptanthrin (TPT), which is an indoloquinazoline alkaloid with multiple biological activities, was studied on its sulfonation in order to increase its water solubility. An 8-substituted tryptanthrin sulfonate (TPTS) was synthesized and structurally characterized by IR, 1H-NMR, ESI-MS, as well as X-ray single crystal diffraction analysis. The interactional mechanism of TPTS with calf thymus DNA (ctDNA) was further studied by UV spectroscopy and DNA viscosity experiment. The addition of ctDNA into the TPTS solution induced moderate hypochromicity on its electronic absorption spectrum, by which an intrinsic binding constant of 1.10×104 M-1 was achieved. While addition of TPTS caused significant increasement on the viscosity of ctDNA solution. The results suggest that TPTS interacts with ctDNA mainly by intercalative binding mode.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 554-556)

Pages:

1694-1699

Citation:

Online since:

July 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] F. Sehindler, H. Zahner. Metabolic products of microorganisms 91.tryptanthrin, at ryptophan, candida lipoly tica. Arch Mikrobiol, (1971), 79: 187.

Google Scholar

[2] G. Honda, M. Tabata. Planta Med. (1979), 36, 85.

Google Scholar

[3] A. K. Bhattacharjee, D. J. Skanchy, B. Jennings, T. H. Hudson, J. J. Brendle, K. A. Werbovetz. Bioorg. Med. Chem. (200 2), 10: 1979.

Google Scholar

[4] C. Heinemann, S. Schliemann-Willers, C. Oberthur, M. Hamburger, P. Elsner. Planta Med. (2004), 70: 385.

Google Scholar

[5] T. Motoki, Y. Takami, Y. Yagi, A. Tai, I. Yamamoto, E. Gohda. Biol. Pharm. Bull., (2005), 28: 260.

DOI: 10.1248/bpb.28.260

Google Scholar

[6] G. Wille, P. Mayser, W. Thoma, T. Monsees, A. Baumgart, H. Schmitz, D. Schrenk, K. Polborn, W. Steglich. Bioorg. Med.Chem. (2001), 9: 955.

DOI: 10.1016/s0968-0896(00)00319-9

Google Scholar

[7] S. L. Niu, G. Ulrich, R. Ziessel, A. Kiss,. et al. Org. Lett., (2009), 11(10): 2049.

Google Scholar

[8] A. Romieu, D. Tavernier-Lohr, et al. Tetrahedron Letters. (2010), 51: 3303–3308.

Google Scholar

[9] W. Fedeli, F. Mazza. Crystal structure of tryptanthrin (indolo[2,1–b]quinazoline–6,12–dione). J. Chem. Soc., Perkin Trans., (1974), 13: 1621.

DOI: 10.1039/p29740001621

Google Scholar

[10] (a) SHELXTL, Version 6.10, Bruker-AXS, Madison, WI, 2000; (b) G. M. Sheldrick, SELXS97 and SHELXL97, University of Göttingen, Germany, (1997).

Google Scholar

[11] J. Marmur. J. Mol. Biol. (1961), 3: 208.

Google Scholar

[12] M. E. Reichmann, S. A. Rice, C. A. Thomas and P. Doty. J. Am. Chem. Soc. (1954), 76: 3047.

Google Scholar

[13] C. V. Kumar, E. H. Asuncion. J. Am. Chem. Soc. 115 (1993): 8547.

Google Scholar

[14] G. I. Pascu, A. C. G. Hotze, C. Sanchez-Cano, B.M. Kariuki and M. J.Hannon. Angew. Chem., Int. Ed., (2007), 46: 4374.

DOI: 10.1002/anie.200700656

Google Scholar

[15] M. A. Galindo, D.Olea, M. A. Romero, J.Gόmez, P. del Castillo, M. J. Hannon, A. Rodger, F. Zamora, J. A. R. Navarro. Chem. Eur. J. (2007), 13: 5075.

Google Scholar

[16] B. M. Zeglis, V. C. Pierre and J. K. Barton. Chem. Commun., (2007): 4565.

Google Scholar

[17] C. Rajput, R. Rutkaite, L. Swanson, I. Haq, J. A. Thomas. Chem. Eur. J., (2006), 12: 4611.

Google Scholar

[18] H. Chao, W. J. Mei, Q. W. Huang, L. N. Ji. J. Inorg. Biochem., (2002), 92: 165.

Google Scholar