The Theory Investigation of the Effect of Substitutions of –CF3 on the Properties of Ru Complex with Phenanthroline

Article Preview

Abstract:

The Ru(phen)32+ complex forms a regular octahedron and the Ru(phen)3 unit is a nearly regular trigonal pyramid with ~90° angles. Lengths between Ru and six nitrogen atoms showed slightly different, and rather insensitive to –CF3 group substituted, as well as the oxidation. There is manifest influence of perfluoro group substitutions on the HOMO and LUMO energies and the substitution of –CF3 enhances the electron-transport abilities, as well as the complex stability. By substitution of –CF3 group show increased λ, with addition one –CF3, a.u 0.02~0.03 ev increase consequently, indicating that the –CF3 in ligand will hinder hole transport. But, the reorganization energies for these complexes are really values compared with other materials for optoelectronic devices.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 554-556)

Pages:

1700-1704

Citation:

Online since:

July 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Fantacci, S.; De Angelis, F.; Selloni, A. J. Am. Chem. Soc. Vol 125 (2003), p.4381.

Google Scholar

[2] Fantacci, S.; De Angelis, F.; Sgamellotti, A.; Marrone, A.; Re, N. J. Am. Chem. Soc. Vol 127 (2005), p.14144.

Google Scholar

[3] Abbotto, A.; Barolo, C.; Bellotto, L.; De Angelis, F.; Gra¨tzel, M.; Manfredi, N.; Marinzi, C.; Fantacci, S.; Yum, J.; Nazeeruddin, M. K. Chem. Commun. Vol 42 (2008), p.5318.

DOI: 10.1039/b811378e

Google Scholar

[4] L. Salassa, C. Garino, G. Salassa, R. Gobetto, C. Nervi. J. Am. Chem. Soc. Vol 130 (2008), p.9590.

DOI: 10.1021/ja8025906

Google Scholar

[5] Schmidt, M. W.; Baldridge, K. K.; Boatz, J. A.; Elbert, S. T.; Gordon, M. S.; Jensen, J. H.; Koseki, S.; Matsunaga, N.; Nguyen, K. A.; Su, S.; Windus, T. L.; Dupuis, M.; Montgomery, M. A. J. Comput. Chem. Vol 14 (1993), p.1347.

DOI: 10.1002/jcc.540141112

Google Scholar

[6] Lee, C.; Yang, W.; Parr, R. G. Phys. Rev. B Vol 37 (1988), p.785.

Google Scholar

[7] Hay, P. J.; Wadt, W. R. J. Chem. Phys. Vol 82 (1985), p.270.

Google Scholar

[8] Casida, M. E.; Jamorski, C.; Casida, K. C.; Salahub, D. R. J. Chem. Phys. Vol 108 (1998), p.4439.

Google Scholar

[9] Stratmann, R. E.; Scuseria, G. E.; Frisch, M. J. J. Chem. Phys. Vol 1091(998), p.8218.

Google Scholar

[10] Villegas, J. M.; Stoyanov, S. R.; Huang, W.; Rillema, P. D. Inorg. Chem. Vol 44 (2005), p.2297.

Google Scholar

[11] Stoyanov, S. R.; Villegas, J. M.; Cruz, A. J.; Lockyear, L. L.; Reibenspies, J. H.; Rillema, P. D. J. Chem. Theory Comput. Vol 1 (2005), p.95.

Google Scholar

[12] A.L. Kaledin, Z. Q. Huang, Y.V. Geletii, T. Q. Lian, C. L. Hill, D. G. Musaev. J. Phys. Chem. A Vol 114 (2010), p.73.

Google Scholar

[13] Marcus, R. A. Rev. Mod. Phys. Vol 65 (1993), p.599.

Google Scholar

[14] Robert S., Manfred F., Bernd W., Jochen B. J. Am. Chem. Soc. Vol 131 (2009), p.16.

Google Scholar