Microstructures and Damping Capacity of Mg-6Zn-0.5Zr Alloy

Article Preview

Abstract:

The dynamic mechanical analyzer (DMA) was applied to investigate the damping properties of Mg-6Zn-0.6Zr alloys. The results show that the as-cast Mg-6Zn-0.6Zr alloy exhibits higher strain amplitude independent damping performance than that of as-homogenized. The strain amplitude dependent damping of the as-homogenized has the best damping performance with the strain amplitude from 3×10-5 to 6×10-4, and the as-extruded is the lowest. When the strain amplitude exceeded 6×10-4, the as-extruded has the best damping capacity all the time within the experimental strain amplitude, and all the alloys reach the high damping capacity. Two critical strain amplitude points were detected in the alloy as-extruded and as-homogenized. The damping peak value is 0.0192 with the strain amplitude of 1.5×10-3 presented in the alloy as-extruded.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 557-559)

Pages:

1624-1628

Citation:

Online since:

July 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] W.F. Smith, Structure and Properties of Engineering Alloys, 2nd ed., McGraw-Hill, Singapore, 1993, p.557

Google Scholar

[2] Y. Kojima, S. Kamado, Mater. Sci. Forum. Vol. 488–489 (2005), p.9

Google Scholar

[3] D. W. James. Mater. Sci. Eng. Vol. 4(1969), p.1

Google Scholar

[4] X. S. Hu, Y. K. Zhang, M. Y. Zheng, K. Wu. Scripta Materialia Vol. 52(2005), p.1141

Google Scholar

[5] N. Srikanth, X. L. Zhong, M. Gupta. Materials Letters Vol. 59(2005), p.3851

Google Scholar

[6] J. F. Wang, S. Gao, P. F. Song, X. F. Huang, Zh. Zh. Shi, F. Sh. Pan. Journal of Alloys and Compounds Vol. 509(2011), p.8567

Google Scholar

[7] J. F. Wang, S. Gao, P. F. Song, X. F. Huang, Zh. Zh. Shi, F. Sh. Pan. Mater. Sci. Eng. Vol. A 528 (2011), p.5914

Google Scholar

[8] J. F. Wang, S. Gao, L. Zhao, Y. B. Hu, F. Sh. Pan. Trans. Nonferrous Met. Soc. China Vol. 20(2010), p.366

Google Scholar

[9] X. H. Chen, J. J. Mao, F. Sh. Pan, J. Peng, J. F. Wang. Trans. Nonferrous Met. Soc. China Vol. 20(2010), p.1305

Google Scholar

[10] J. F. Wang, S. Gao, F. Sh. Pan, A. T. Tang, P. D. Ding. The Chinese Journal of Nonferrous Metals Vol. 19(2009), p.821

Google Scholar

[11] C. M. Liu, X. R. Zhu, H. T. Zhou: Phase diagrams of magnesium alloy (Central South University Press, China 2006).

Google Scholar

[12] A. Granato, K. Lücke, J. Appl. Phys. Vol. 27 (1956), p.789

Google Scholar

[13] A. Granato, K. Lücke, J. Appl. Phys. Vol. 27 (1956), p.593

Google Scholar

[14] K. Sugimoto, K. Niiya, T. Okamoto, K. Kishitake. Trans JIM Vol. 18(1977), p.277

Google Scholar

[15] X. S. Hu, K. Wu, M. Y. Zheng, W. M. Gan, X. J. Wang. Mater. Sci. Eng. A Vol. 452-453(2007), p.374

Google Scholar

[16] D.H. Rogers. J. Appl. Phys. Vol. 33(1962), p.781

Google Scholar