[1]
T. Onda, S. Shibuichi, N. Satoh, K. Tsujii, Super-water-repellent fractal surfaces, Langmuir 12(1996) 2125-2127.
DOI: 10.1021/la950418o
Google Scholar
[2]
Q. Xie, J. Xu, L. Feng, L. Jiang, W.Tang, X.Luo , C. C.Han, Facile creation of a super-amphiphobic coating surface with bionic microstructure, Adv. Mater. 16(2004) 302-305.
DOI: 10.1002/adma.200306281
Google Scholar
[3]
H.Y. Erbil, A.L. Demirel, Y. Avci, O.Mert, Transformation of a simple plastic into a superhydrophobic surface, Science 299(2003) 1377-1380.
DOI: 10.1126/science.1078365
Google Scholar
[4]
R.Wang, K. Hashimoto, A.Fujishima, M.Chikuni, E.Kojima, A.Kitamura, M.Shimohigoshi, T.Watanabe, Nature 388(1997) 431.
DOI: 10.1038/41233
Google Scholar
[5]
N. J.Shirtcliffe, G. Hale, M. I.Newton, C. C. Perry, Intrinsically superhydrophobic organosilica sol-gel foams, Langmuir 19(2003) 5626-5631.
DOI: 10.1021/la034204f
Google Scholar
[6]
K.Tadanaga, J.Morinaga, A. Matsuda, T. Minami, Superhydrophobic-superhydrophilic micropatterning on flowerlike alumina coating film by the Sol-Gel method, Chem. Mater. 12(2000) 590-592.
DOI: 10.1021/cm990643h
Google Scholar
[7]
D. O. H.Teare, C. G.Spanos , P.Ridley , E. J.Kinmond, V. Roucoules, J. P. S.Badyal, S. A.Brewer , S.Coulson, C.Willis, Pulsed plasma deposition of surer-hydrophobic nanospheres, Chem. Mater. 14(2002) 4566-4571.
DOI: 10.1021/cm011600f
Google Scholar
[8]
I.Woodward,W. C. E.Schofield, V.Rouco ules, J. P. S. Badyal, Super-hydrophobic surfaces produced by plasma fluorination of polybutadiene films, Langmuir 19(2003) 3432-3438.
DOI: 10.1021/la020427e
Google Scholar
[9]
R. Rosario, D. Gust, A.A. Garcia, M. Hayes, J.L. Taraci, T.Clement, Lotus Effect Amplifies Light-Induced Contact Angle Switching, J. Phys, Chem. B 108 (2004) 12640-12642.
DOI: 10.1021/jp0473568
Google Scholar
[10]
J.T. Han, D.H. Lee, C.Y. Ryu, K. Cho, Fabrication of superhydrophobic surface from a supramolecular organosilane with quadruple hydrogen bonding, J. Am. Chem. Soc. 126 (2004) 4796-4797.
DOI: 10.1021/ja0499400
Google Scholar
[11]
X. Zhang, F. Shi, X. Yu, H. Liu, Y. Fu, Z. Q. Wang, L. Jiang, X. Y. Li, Polyelectrolyte multilayer as matrix for electrochemical deposition of gold clusters: toward super-hydrophobic surface, J. Am. Chem. Soc. 126(2004) 3064-3065.
DOI: 10.1021/ja0398722
Google Scholar
[12]
F.Shi, Z. Q. Wang, X. Zhang, Combining a layer-by-layer assembling technique with electrochemical deposition of gold aggregates to mimic the legs of water striders, AdV. Mater. 17(2005) 1005-1009.
DOI: 10.1002/adma.200402090
Google Scholar
[13]
X.Yu, Z. Q. Wang, Y. G. Jiang, F. Shi, X. Zhang, Reversible pH-responsive surface: from superhydrophobicity to superhydrophilicity, AdV. Mater. 17(2005) 1289-1293.
DOI: 10.1002/adma.200401646
Google Scholar
[14]
N. Zhao, F. Shi, Z. Q. Wang, X. Zhang, Combining layer-by-layer assembly with electrodeposition of silver aggregates for fabricating superhydrophobic surfaces, Langmuir 21(2005) 4713-4716.
DOI: 10.1021/la0469194
Google Scholar
[15]
Y. G. Jiang, Z. Q. Wang, X. Yu, F. Shi, H. P. Xu, X. Zhang, M. Smet, W. Dehaen, Self-assembled monolayers of dendron thiols for electsodeposition of gold nanostructures: toward fabrication of superhydrophobic/superbydrophilic surfaces and pH-responsive surfaces, Langmuir 21(2005) 1986-1990.
DOI: 10.1021/la047491b
Google Scholar
[16]
F. Shi, X. X. Chen, L. Y. Wang, J. Niu, J. H. Yu, Z. Q. Wang, X. Zhang, Roselike microstructures formed by direct in situ hydrothermal synthesis: from superhydrophilicity to superhydrophobicity, Chem. Mater. 17(2005) 6177-6180.
DOI: 10.1021/cm051453b
Google Scholar
[17]
A.B. D. Cassie, S. Baxter, Wettability of porous surfaces, Trans. Faraday Soc. 40 (1944) 546-551.
DOI: 10.1039/tf9444000546
Google Scholar