Observation of Fisheye Cracks around TiN and Al2O3 Inclusions in Repeatedly Quenched High Carbon Bearing Steel

Article Preview

Abstract:

Martensitic high-carbon high-strength SAE 52100 bearing steel is one of the main alloys used for rolling contact applications where high wear resistance is required. Refining the prior austenite grain size through repeated heating is a process commonly used to enhance the material’s strength. In this work, the microstructure of repeatedly quenched Ti, N-rich ultra-clean SAE 52100 steel was investigated. The material was melted by an electric furnace and formed by continuous casting and forging, and the crack origin on the fracture surface was investigated. It was found repeated furnace quenching effectively refined the martenstic structure.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

150-156

Citation:

Online since:

September 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] A. F. Madayag: Metal Fatigue Theory and Desigen (John Wiley & Sons Inc., USA, 1969).

Google Scholar

[2] W. D. Syniuta and C. J. Corrowa: Wear, Vol. 15, No. 3 (1970), pp.171-186.

Google Scholar

[3] Y. Murakami: Effects of Small Defects and Nonmetallic Inclusions (Elsever Science Ltd., UK, 2002).

Google Scholar

[4] T. Nasito, H. Ueda and M. Kikuchi: Metallurgical and Materials Trans A, Vol. 15, No. 7 (1984), pp.1431-1436.

Google Scholar

[5] Y. Murakami, S. Kodama and S. Konuma: International Journal of Fatigue, Vol. 11, No. 5 (1989), pp.291-298.

Google Scholar

[6] Y. Murakami and H. Usuki: International Journal of Fatigue, Vol. 11, No. 5 (1989), pp.299-307.

Google Scholar

[7] G. Qian, Y. Hong and C. Zhou: Engineering Failure Analysis, Vol. 17 (2010), pp.1517-1525.

Google Scholar

[8] R. A. Grange and E. R. Shackelford, U.S. Patent 3, 178, 324. (1965).

Google Scholar

[9] S. W. Mahajan: Metallograohy, Vol. 6 (1973), pp.337-345.

Google Scholar

[10] R. A. Grange: Metallurgical and Materials Trans. A, Vol. 2 (1971), pp.65-78.

Google Scholar

[11] T. Hijikata, T. Yamazaki and K. Fujita, U.S. Patent 4, 222, 799. (1980).

Google Scholar

[12] M. Tokizane, N. Matsumura, K. Tsuzaki, T. Maki and I. Tamura: Metallurgical and Materials Trans. A, Vol. 13, No. 8 (1982), pp.1379-1388.

DOI: 10.1007/bf02642875

Google Scholar

[13] S. Bozo: Journal of Materials Processing Technology, Vol. 155, No. 156 (2004), pp.1704-1707.

Google Scholar

[14] T. Fujimatsu, M. Nishikawa, K. Hashimoto and A. Yamamoto: Materials Science Forum, Vols. 561-565 (2007), pp.2345-2348.

DOI: 10.4028/www.scientific.net/msf.561-565.2345

Google Scholar

[15] C. Ooki, K. Maeda and H. Nakashima: NTN Technical review, No. 71 (2004), pp.2-7.

Google Scholar

[16] H. Koike, E. C. Santos, K. Kida, T. Honda and J. Rozwadowska: Advanced Material Research, Vols. 217-218 (2011), pp.1266-1271, DOI: 10. 4028/www. scientific. net/AMR. 217-218. 1266.

DOI: 10.4028/www.scientific.net/amr.217-218.1266

Google Scholar

[17] E. C. Santos, K. Kida, T. Honda, J. Rozwadowska, K. Houri and K. Hashimoto: Advanced Material Research, Vols. 217-218 (2011), pp.982-987, DOI: 10. 4028/www. scientific. net/AMR. 217-218. 982.

DOI: 10.4028/www.scientific.net/amr.217-218.982

Google Scholar

[18] K. Mizobe, E. C. Santos, T. Honda, H. Koike, K. Kida and T. Shibukawa: Advanced Material Research, Vols. 457-458 (2012), pp.1025-1031, DOI: 10. 4028/www. scientific. net/ AMR. 457-458. 1025.

DOI: 10.4028/www.scientific.net/amr.457-458.1025

Google Scholar