Observation of Crack Initiation from Inclusions in Rolling Contact Fatigue Tested Specimens, Using a Newly Developed Single-Ball Testing Device

Article Preview

Abstract:

In order to obtain experimental data to investigate the mechanism of crack initiation and propagation, an innovative rolling contact fatigue (RCF) machine was developed. Compared to the conventional thrust type RCF machine the new device enables more efficient RCF testing and observation of subsurface cracks. Experimental data and information on inclusions and micro-cracks were obtained through observation by a laser confocal microscope and comparison with stress analysis. The depth of detected crack initiation is strongly correlated with the stress distribution.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

182-186

Citation:

Online since:

September 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] G. Lundberg and A. Palmgren: Dynamic Capacity of Roller Bearings (Generalstabens litografiska anstalts förlag, Sweden 1947).

Google Scholar

[2] D. Nélias, M. L. Dumont, F. Champiot, A. Vincent, D. Girodin, R. Fougeres and L. Flamand: Journal of Tribology, Vol. 121, No. 2, (1999), pp.240-251.

DOI: 10.1115/1.2833927

Google Scholar

[3] J. Rozwadowska, K. Kida, E. C. Santos, Takashi Honda, K. Kanemasu and K. Hashimoto: Advanced Materials Research, Vols. 418-420, (2011), pp.1613-1617.

DOI: 10.4028/www.scientific.net/amr.418-420.1613

Google Scholar

[4] K. L. Johnson: Contact Mechanics (Cambridge University Press, England 1985).

Google Scholar

[5] A. Sackfield and D. A. Hills: The Journal of Strain Analysis for Engineering Design, Vol. 18, No. 2, (1983), pp.101-105.

Google Scholar

[6] K. Kida: Heat Treatment (in Japanese), Vol. 48, No. 2, (2008), pp.79-87.

Google Scholar

[7] K. Hashimoto, K. Hiraoka, K. Kida and E. C. Santos: Materials Science and Technology, Vol. 28, (2012), No. 1, pp.39-43.

Google Scholar

[8] M. Koga, E. C. Santos, T. Honda, K. Kida and T. Shibukawa: Advanced Materials Research, Vols. 457-458, (2012), pp.504-510.

DOI: 10.4028/www.scientific.net/amr.457-458.504

Google Scholar

[9] K. Mizobe, E. C. Santos, T. Honda, H. Koike, K. Kida, and T. Shibukawa: Advanced Materials Research, Vols. 457-458, (2012), pp.1025-1031.

DOI: 10.4028/www.scientific.net/amr.457-458.1025

Google Scholar

[10] K. Hashimoto, T. Fujimatsu, N. Tsunekage, K. Hiraoka, K. Kida and E.C. Santos: Materials and Design, Vol. 32, (2011), No. 3, pp.1605-1622.

DOI: 10.1016/j.matdes.2010.08.052

Google Scholar

[11] K. Hashimoto, T. Fujimatsu, N. Tsunekage, K. Hiraoka, K. Kida and E.C. Santos: Materials and Design, Vol. 32, (2011), No. 10, pp.4980-4985.

DOI: 10.1016/j.matdes.2011.06.056

Google Scholar

[12] E.C. Santos, K. Kida, T. Honda, J. Rozwadowska, K. Houri and K. Hashimoto: Advanced Materials Research, Vols. 217-218, (2011), pp.982-987.

DOI: 10.4028/www.scientific.net/amr.217-218.982

Google Scholar

[13] H. Koike, E.C. Santos, K. Kida, J. Rozwadowska and T. Honda: Advanced Materials Research, Vols. 217-218, (2011), pp.1266-1271.

DOI: 10.4028/www.scientific.net/amr.217-218.1266

Google Scholar

[14] E.C. Santos, T. Honda and K. Kida: Proceedings of SPIE-The International Society for Optical, 7522, SPIE 7522-333, (2009).

Google Scholar

[15] K. Kida, K. Yoshidome, K. Yamakawa, H. Harada and N. Oguma: Int. J. Fatigue & Fracture of Engineering Materials & Structures, Vol. 29, No. 12, (2006), pp.1021-1030.

DOI: 10.1111/j.1460-2695.2006.01067.x

Google Scholar

[16] K. Kida, T. Yamazaki, M. Shibata, N. Oguma and H. Harada: Fatigue & Fracture of Engineering Materials & Structures, Vol. 27, No. 6, (2004), pp.481-493.

DOI: 10.1111/j.1460-2695.2004.00771.x

Google Scholar