Research of Multi-Axes Motion Control System Based on LabVIEW Platform

Article Preview

Abstract:

According to Dynamic Link Library (DLL), the common motion card was successfully run on Labview virtual platform, which can graphically compile program. Based on Labview8.6 platform, Leadtech SMC-6480 control card and Yaskawa SJME-02AMA41 servo motor were used as the hardware to realize multi-axes motion control. The results indicated that each axis has three motion models of automatic, manual and return-to-zero, which can switch mutually at any time.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

763-768

Citation:

Online since:

September 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] R Gao, C Miao, Zh Wang. Design and exploitation on multi-axes motion control system based on LabVIEW . Journal of tianjin polytechnic university, 2008, 27(6): 58-61.

Google Scholar

[2] U. Geissler, J. Funck, M. Schneider-Ramelow, H. J. Engelmann, I. Rooch,W. H. Muller, and H. Reichl, Interface Formation in the US-Wedge/Wedge-Bond Process of AlSi1/CuNiAu Contacts, J. Electron. Mater., vol. 40, no. 2, pp.239-246, (2011).

DOI: 10.1007/s11664-010-1439-2

Google Scholar

[3] B. I. Noh, J. M. Koo, J. L. Jo, and S. B. Jung, Application of Underfill for Flip-Chip Package Using Ultrasonic Bonding, JPN. J. Appl. Phys., vol. 47, no. 5, pp.4257-4261, (2008).

DOI: 10.1143/jjap.47.4257

Google Scholar

[4] S. Murali, N. Srikanth, and C. J. Vath III, Effect of wire size on the formation of intermetallics and Kirkendall voids on thermal aging of thermosonic wire bonds, Mater. Lett., vol. 58, no. 25, pp.3096-3101, (2004).

DOI: 10.1016/j.matlet.2004.05.070

Google Scholar

[5] X Xiong , Application of Common Motion Control Card Based on LabVIEW. control & automation. 2006,139-141.

Google Scholar

[6] Y. H. Tian, C. J. Hang, C. Q. Wang, G. Q. Ouyang, D. S. Yang, and J. P. Zhao, Reliability and failure analysis of fine copper wire bonds encapsulated with commercial epoxy molding compound, Microelectron. Reliab., vol. 51, no. 1, pp.157-165, (2011).

DOI: 10.1016/j.microrel.2010.06.004

Google Scholar

[7] L. Han, F. Wang, W. Xu, J. Zhong, Bondability window and power input for wire bonding, Microelectron. Reliab., vol. 46, no. 2-4, pp.610-615, (2006).

DOI: 10.1016/j.microrel.2005.05.018

Google Scholar

[8] Y Li. Design of Motion Control System Based on LabVIEW. China Science and technology information, (2009).

Google Scholar

[9] J. Li, J. Duan, L. Han, and J. Zhong, Microstructural characteristics of Au/Al bonded interfaces, Mater. Charact. Vol. 58, pp.103-107, (2007).

DOI: 10.1016/j.matchar.2006.03.018

Google Scholar

[10] H. Xu, C. Liu, V. V. Silberschmidt, S. S. Pramana, T. J. White, and Z. Chen A re-examination of the mechanism of thermosonic copper ball bonding on aluminium metallization pads, Scripta Mater., vol. 61, no. 2, pp.165-168, (2009).

DOI: 10.1016/j.scriptamat.2009.03.034

Google Scholar

[11] J. Li, L. Han, J. Duan, and J. Zhong, Interface Mechanism of Ultrasonic Flip Chip Bonding, Appl. Phys. Lett., vol. 90, p.242902, (2007).

DOI: 10.1063/1.2747673

Google Scholar

[12] H. Ji, M. Li, J. Kim, D. Kim, and C. Wang, Nano features of Al/Au ultrasonic bond interface observed by high resolution transmission electron microscopy, Mater. Charact., vol. 59, pp.1419-1424, (2008).

DOI: 10.1016/j.matchar.2008.01.001

Google Scholar

[13] The software manuals of SMC-6480 four-axes motion control device. Version1. 0.

Google Scholar

[14] X Qi , J Zhou, J Jiao. LabVIEW 8. 2 introduction to Chinese version with typical examples. Beijing: people's posts and telecommunications publishing house, (2010).

Google Scholar

[15] H. Kim, J. Y. Lee, K. W. Paik, K. W. Koh, Effects of Cu/Al Intermetallic Compound (IMC) on Copper Wire and Aluminum Pad Bondability, IEEE T. Compon. Pack. T., vol. 26, no. 2, pp.367-374, (2003).

DOI: 10.1109/tcapt.2003.815121

Google Scholar

[16] X Lin. Multi-Axes digital servo motor control system Based On LabVIEW. Science and technology information, 2009, (5) : 101-102.

Google Scholar

[17] J. Li, Liu L., L. Deng, B. Ma, F. Wang, L. Han, Interfacial microstructures and thermodynamics of thermosonic Cu-wire bonding, IEEE Electr. Device L., vol. 32, No. 10, pp.1433-1435, (2011).

DOI: 10.1109/led.2011.2161749

Google Scholar

[18] J H Zhang, J Zhang, L Yang, Effects of the Thermocompression Bonding on the Microstructure and Contact Resistance for the Ultrafine Pitch Chip-on-Glass Packaging With Nonconductive Film, J. Electron. Packaging, vol. 132, p.044501, (2010).

DOI: 10.1115/1.4002898

Google Scholar

[19] H. Xu, C. Liu, V.V. Silberschmidt, S.S. Pramana, T.J. White, Z. Chen, V. L. Acoff. Behavior of intermetallics, aluminum oxide and voids in Cu-Al wire bonds., Acta Materialia. 2011, vol. 59, no. 14, pp.5661-5673.

DOI: 10.1016/j.actamat.2011.05.041

Google Scholar