Study of Top Triangular Nano-Grating on Solar Cell Using Rigorous Coupled Wave Analysis

Article Preview

Abstract:

This paper presents the simulation results of top nano-grating on solar cell using rigorous coupled wave analysis (RCWA) method. However, compared to other simulation results, we calculated weighted total transmission of solar cell according to Sun spectrum and Silicon photo detector responsivity. Our optimization shows that the top grating with period 200nm, width 40nm, and height 150nm is the optimization structure. This case has 0.45544 total weighted transmission powers and is about 70.9% improvement compared to the non-grating case.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

427-432

Citation:

Online since:

September 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] A. Lin and J. Phillips: Optimization of random diffraction gratings in thin-film solar cells using genetic algorithms, Solar Energy Materials and Solar Cells Vol. 92 (2008), p.1689.

DOI: 10.1016/j.solmat.2008.07.021

Google Scholar

[2] J. W. Leem, Y. M. Song, Y. T. Lee, and J. S. Yu: Effect of etching parameters on antireflection properties of Si subwavelength grating structures for solar cell applications, Applied Physics B-lasers and Optics Vol. 100 (2010), p.891.

DOI: 10.1007/s00340-010-4128-1

Google Scholar

[3] J. Springer, A. Poruba, L. Mullerova, M. Vanecek, O. Kluth, and B. Rech: Absorption loss at nanorough silver back reflector of thin-film silicon solar cells, J. App. Phys. Vol. 95 (2004), p.1427.

DOI: 10.1063/1.1633652

Google Scholar

[4] H. Sai, H. Fujiwara, M. Kondo, and Y. Kanamori: Enhancement of light trapping in thin-film hydrogenated microcrystalline Si solar cells using back reflectors with self-ordered dimple pattern, Appl. Phys. Lett. Vol. 93 (2008), p.142501.

DOI: 10.1063/1.2993351

Google Scholar

[5] S. Mokkapati, F. J. Beck, A. Polman, and K. R. Catchpole: "Designing periodic arrays of metal nanoparticles for light-trapping applications in solar cells, Appl. Phys. Lett. Vol. 95 (2009), p.053115.

DOI: 10.1063/1.3200948

Google Scholar

[6] O. Isabella, J. Krc, and M. Zeman: Modulated surface textures for enhanced light trapping in thin-film silicon solar cells, Appl. Phys. Lett. Vol. 97 (2010), p.101106.

DOI: 10.1063/1.3488023

Google Scholar

[7] M. G. Moharam, T. K. Gaylord: Rigorous coupled-wave analysis of metallic surface-relief gratings, J. Opt. Soc. Am. Vol. A 3 (1986), p.1780.

DOI: 10.1364/josaa.3.001780

Google Scholar

[8] L. Li: New formulation of the Fourier modal method for crossed surface-relief gratings, J. Opt. Soc. Am. Vol. A 14 (1997), p.2758.

DOI: 10.1364/josaa.14.002758

Google Scholar

[9] M. Jiang, T. Tamir, and S. Zhang: Modal theory of diffraction by multilayered gratings containing dielectric and metallic components, J. Opt. Soc. Am. Vol. A 18 (2001), p.807.

DOI: 10.1364/josaa.18.000807

Google Scholar

[10] X. Jin, A. Ellaboudy, and G. Chavoor, Improvement of Solar Cell Efficiency Using Nano-scale Top and Bottom Grating, SPIE Optical Engineering + Applications, 21-25 August 2011, San Diego, California, Proc. of SPIE, Vol. 8111, 811111( 2011).

DOI: 10.1117/12.892807

Google Scholar