Experimental Study on the Imaging of the Squeezed State Light with -4.93dB Quantum-Noise Reduction at 1064 nm

Article Preview

Abstract:

A stable amplitude squeezed state light was generated by utilizing the optical parametric down-conversion (OPDC) technique based on periodically poled KTiOPO4(PPKTP) in an optical parametric oscillator (OPO) resonator. We observed a -4.93dB of squeezing in homodyne measurement. The imaging experiments of resolution target were conducted. It shown that the imaging resolution with squeezed state light as light source was 1.26 times that of the resolution with coherent light as light source. The squeezed state light was applied for imaging of real objects and we found that the imaging with squeezed light as light source is more distinct and has less distortion.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

439-444

Citation:

Online since:

September 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Moritz Mehmet, Sebastian Steinlechner, Tobias Eberle, Henning Vahlbruch, André Thüring, Karsten Danzmann, and Roman Schnabel, Observation of cw squeezed light at 1550 nm, Opt. Lett. 34(7), 1060-1062 (2009).

DOI: 10.1364/ol.34.001060

Google Scholar

[2] Hidehiro Yonezawa, Koyo Nagashima, and Akira Furusawa, Generation of squeezed light with a monolithic optical parametric oscillator: Simultaneous achievement of phase matching and cavity resonance by temperature control, Opt. Express 18(19), 20143-20150 (2010).

DOI: 10.1364/oe.18.020143

Google Scholar

[3] H. Vahlbruch, M. Mehmet, S. Chelkowski, B. Hage, A. Franzen, N. Lastzka, S. Goßler, K. Danzmann, and Roman Schnabel, Observation of Squeezed Light with 10-dB Quantum-Noise Reduction, Phys. Rev. Lett. 100(3), 033602 (2008).

DOI: 10.1103/physrevlett.100.033602

Google Scholar

[4] M. Mehmet, H. Vahlbruch, N. Lastzka, K. Danzmann, and R. Schnabel, Observation of squeezed states with strong photon-number oscillations, Phys. Rev. A 81(1), 013814 (2010).

DOI: 10.1103/physreva.81.013814

Google Scholar

[5] P. Walther, J. Pan, M. Aspelmeyer, R. Ursin, S. Gasparoni, and A. Zeilinger, De Broglie wavelength of a non-local four-photon state, Nature (London) 429, 158-161 (2004).

DOI: 10.1038/nature02552

Google Scholar

[6] B. Hage1, A. Samblowski, J. DiGuglielmo, A. Franzen, J. Fiurášek, and R. Schnabel, Preparation of distilled and purified continuous-variable entangled states, Nature Phys. 4, 915-918 (2008).

DOI: 10.1038/nphys1110

Google Scholar

[7] K. Wagner, J. Janousek, V. Delaubert, H. Zou, C. Harb, N. Treps, J. Morizur, P. Lam, and H. Bachor, Entangling the Spatial Properties of Laser Beams, Science 321(5888), 541-543 (2008).

DOI: 10.1126/science.1159663

Google Scholar

[8] A. Ourjoumtsev, R. Tualle-Brouri, J. Laurat, and P. Grangier, Generating Optical Schrödinger Kittens for Quantum Information Processing, Science 312(5770), 83-86 (2006).

DOI: 10.1126/science.1122858

Google Scholar

[9] D. Bouwmeester, J. Pan, K. Mattle1, M. Eibl, H. Weinfurter, and A. Zeilinger, Experimental quantum teleportation, Nature (London) 390, 575-579 (1997).

DOI: 10.1038/37539

Google Scholar

[10] L. Chen, S. W. Bi, and B. Z. Lu, Experimental study on the imaging of the squeezed state light at 1064 nm, Laser Phys. 21(7), 1202-1207.

DOI: 10.1134/s1054660x11130056

Google Scholar

[11] R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, Laser phase and frequency stabilization using an optical resonator, Appl. Phys. B 31(2), 97-105 (1983).

DOI: 10.1007/bf00702605

Google Scholar

[12] K. Schneider, R. Bruckmeier, H. Hansen, S. Schiller, and J. Mlynek, Bright squeezed-light generation by a continuous-wave semimonolithic parametric amplifier, Opt. Lett. 21(17), 1396-1398 (1996).

DOI: 10.1364/ol.21.001396

Google Scholar