An Improved CSO Resolution Method for IR Sensor Based on Pixel-Cluster Decomposition

Article Preview

Abstract:

The observation of Closely Spaced Object (CSO) using a space-based IR sensor can result in merged measurements on the focal plane due to the limited resolution and the Point Spread Function (PSF) of optics. This paper proposes an improved CSO resolution method based on pixel-cluster decomposition meeting real-time computation requirement. Simulation are carried out to test the performance of the method, and the results confirm its effectiveness.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

486-490

Citation:

Online since:

September 2012

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] J. Korn, H. Holtz, and M. S. Farber: Trajectory Estimation of Closely Spaced Objects (CSO) using Infrared Focal Plane Data of an STSS (Space Tracking and Surveillance System) Platform, Proc. SPIE Signal and Data Processing of Small Targets, vol. 5428, 2004, pp.387-399.

DOI: 10.1117/12.541171

Google Scholar

[2] G. L. Bretthorst, and C. R. Smith: Bayesian Analysis of Signals from Closely-Spaced Objects, Proc. SPIE in Infrared Systems and Components III, vol. 1050, 1989, pp.93-104.

DOI: 10.1117/12.951434

Google Scholar

[3] J. T. Reagan and T. J. Abatzoglou: Model-Based Superresolution CSO Processing, Proc. SPIE Signal and Data Processing of Small Targets, vol. 1954, (1993).

DOI: 10.1117/12.157809

Google Scholar

[4] Walter E. Lillo and Nielson W. Schulenburg: Bayesian Closely Spaced Object Resolution with Application to Real Data, Proc. SPIE Signal Processing, Sensor Fusion and Target Recognition XI, vol. 4729, 2002, pp.152-162.

DOI: 10.1117/12.477601

Google Scholar

[5] R. Waters, A. Sommese, and D. Johnston: Infrared MUSIC from Z Technology Focal Planes, Proc. SPIE on Materials, Devices, Techniques and Applications for Z-plane Focal Plane Array Technology, 1989, pp.2-12.

DOI: 10.1117/12.960364

Google Scholar

[6] C. Rago and H. Landau: Stereo Spatial Super-resolution Technique for Multiple Reentry Vehicles, Proc. IEEE Aerospace Conference, March (2004).

DOI: 10.1109/aero.2004.1367965

Google Scholar

[7] L. Lin, H. Xu, and W. An: QPSO-based algorithm of CSO joint infrared super-resolution and trajectory estimation, Journal of Systems Engineering and Electronics, vol. 22, 2011, pp.405-411.

DOI: 10.3969/j.issn.1004-4132.2011.03.007

Google Scholar

[8] D. Macumber, S. Gadaleta, A. Floyd, and A. Poore: Hierarchical Closely Spaced Object (CSO) Resolution for IR Sensor Surveillance, Proc. SPIE Signal and data processing of small targets, vol. 5913, 2005, pp.1-15.

DOI: 10.1117/12.613963

Google Scholar

[9] S. Gadaleta, A. Poore, and B. J. Slocumb: Pixel-cluster decomposition tracking for multiple IR-sensor surveillance, Proc. SPIE in Signal and Data Processing of Small Targets, vol. 5204, 2003, pp.270-282.

DOI: 10.1117/12.502731

Google Scholar

[10] J. Hoshen and R. Kopelman: Percolation and cluster distribution. I. Cluster multiple labeling technique and critical concentration algorithm, Physical Review B, vol. 14, pp.3438-3445, (1976).

DOI: 10.1103/physrevb.14.3438

Google Scholar