Study on Energy Splitting of γ-LiAlO2:Fe3+ Ceramic as a Functional Inorganic Material Sintered by Microwave Based on Material Applications

Article Preview

Abstract:

The γ-LiAlO2: Fe3+ ceramics were successfully fabricated by using multi-mode cavity microwave furnace, which can be used as an optical functional material. The sample’s photo luminescence spectrum was measured at room temperature. There are six bands in the range of 12000-25000 cm-1. Using the crystal-field theory and introducing the average covalent factor model, we calculated the energy splittings of Fe3+ ions in γ-LiAlO2. These bands were firstly explained and assigned and calculation results are in good agreement with the optical experiment data. All results can be used for the production of optical devices.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

379-382

Citation:

Online since:

October 2012

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] M. Ezaki, M. Obara, H. Kumagai and K. Toyoda: Appl Phys Lett. Vol. 69 (1996), p.2977.

Google Scholar

[2] K. Xu, J. Xu and P.Z. Deng: J . Cryst Growth. Vol. 193 (1998), p.127.

Google Scholar

[3] P. Waltereit, O. Brandt and M. Bamsteiner: Phys. Status. Solid. Vol. 180 (2000), p.133.

Google Scholar

[4] P. Waltereit, O. Brandt and M. Bamsteiner: J. Cryst. Growth. Vol. 217 (2000), p.143.

Google Scholar

[5] P. Waltereit, O. Brandt and M. Bamsteiner: Nature. Vol. 406 (2000), p.133865.

Google Scholar

[6] S.I. Hirano and T. Hayashi: J Am Ceram Soc. Vol. 70 (1987), p.133171.

Google Scholar

[7] J. Jimonez-Becerril, P. Bosch and S. Bulbulian: J Nucl Mater. Vol. 185 (1991), p.304.

Google Scholar

[8] Y. Kawamura, M. Nishikawa and K. Tanaka: J Nucl Sci Technol. Vol. 29 (1992), p.436.

Google Scholar

[9] W. Lin, X.D. Bai and Y.H. Ling: Rare Met. Mater. Eng. Vol. 32 (2003), p.995.

Google Scholar

[10] J. Zou and T.H. Huang: Acta phys. sin. Vol. 55 (2006), p.3536.

Google Scholar

[11] T.H. Huang and S.M. Zhou: J. Synth. Cryst. Vol. 36 (2007), p.1249.

Google Scholar

[12] S. Kuck: Chem. Phys. Vol. 204 (1999), p.133387.

Google Scholar

[13] G.L. Peng, Y. Zhuang and J. Zou: J. Synth Cryst. Vol. 34 (2005), p.399.

Google Scholar

[14] W.R. Tinga and W.A.G. Voss: Microwave Power Engineering[M]., New York: Academic Press, 1968. 73-78.

Google Scholar

[15] W.H. Sutton: Am. Ceram. Soc. Bull. Vol. 68 (1989), p.376.

Google Scholar

[16] Z.Z. Jiang: Nucl. Tech. Vol. 26 (2003), p.956.

Google Scholar

[17] M.G. Zhao and W.L. Yu: Crystal Field Theory(M). Sichuan Education Press, Chengdu, 1988 in Chinese.

Google Scholar

[18] M.G. Zhao: Crystal Field And Electron Paramagnetic Resonance Theory(M). Science Press, 1990 in Chinese.

Google Scholar

[19] O. Brandt, R. Muralidharan and P. Waltereit: Appl. phys. lett. 75 (1999), p.4019.

Google Scholar

[20] M.G. Zhao, M.L. Du and G.Y. Sen: J. Phys. C: Solid State Phys. Vol. 20 (1987), p.5557.

Google Scholar

[21] D. Curie, C. Barthou and B. Canny: J. Chem. Phys., Vol. 61 (1974), p.3048.

Google Scholar

[22] M.G. Zhao: The ligand field theory[M]. Guizhou People Press, 1986 in Chinese.

Google Scholar

[23] Y.Y. Yeung and C. Rudowicz: Comput. Chem. Vol. 16 (1992), p.207.

Google Scholar