Preparation and Characterization of Ag and Co Doped ZnO Nano Particles

Article Preview

Abstract:

Pure ZnO and Ag, Co doped ZnO nano particles [Zn1-xAgxCoyO, where x = 0.00 and 0.05, y = 0.05] were synthesized by chemical co precipitation method without use of surfactant. All the prepared samples calcinated in 1 hour at 500oC, after that the morphology of the samples were evaluated by Scanning Electron Microscope (SEM). The X- ray diffraction (XRD) results indicated that the synthesized co-doped ZnO nano crystals had the pure hexagonal structure without any significant change in the structure affected by Ag and Co substitution. Dopant elements Ag and Co are present in the ZnO host material and conformed by Energy Dispersive Analysis of X-ray Spectra (EDAX). The incorporation of Ag+ in the place of Zn2+ has made a considerable decrease in the size of nano crystals as compared to pure ZnO nano particles (It is to be noted that Co should be kept constant at 5 mol %). Blue emission was observed by Photo Luminescence (PL) Spectra.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

248-252

Citation:

Online since:

October 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] S.C. Singh, R. Gopal, Laser Irradiance and Wavelength dependent compositional evolution of inorganic ZnO and ZnO OH/Organic SDS Nanocomposite Material, J. Phys, Chem., C 112 (2008) 2812-2819.

DOI: 10.1021/jp0753676

Google Scholar

[2] D.D. Wang, J.H. Yang, L.L. Yang, Y.J. Zhang, J.H. Lang, M. Gao, Morphology and photoluminescence properties of ZnO nanostructures fabricated with different given time of Ar, Cryst.Res.Technol, 43,(2008) 1041-1045.

DOI: 10.1002/crat.200800109

Google Scholar

[3] L. Sikong, J. Damchan, K. Kooptarnond, S. Niyomwas, Effect of doped SiO2 and calcinations temperature on phase transformation of TiO2 Photo catalyst prepared by Sol-gel method Songklanakarin. J. Sci. Technol, 30 (2008) 385-392.

Google Scholar

[4] M. Vaface, M.S. Ghamsari, Preparation and characterization of ZnO nanoparticles by a novel Sol-gel route, Mater, Lett.61 (2007) 3265-3268.

DOI: 10.1016/j.matlet.2006.11.089

Google Scholar

[5] M. Jang, C.R. Kim, H. Ryu, M. Razeghi, W.G. Jung, ZnO 3d flower like nanostructure synthesized on GaN epitaxial layer by simple route hydrothermal Process, J. Alloys Compd, 463 (2008) 503-510.

DOI: 10.1016/j.jallcom.2007.09.077

Google Scholar

[6] Y. Zhang, J. Mu, One-pot synthesis, photoluminescence, and photo catalysis of Ag/ZnO composites J. J. Colloid Interface Sci. 309 (2007) 478-84.

DOI: 10.1016/j.jcis.2007.01.011

Google Scholar

[7] S. Suwanboon, P. Amornpitoksuk, A. Raidoux, J.C. Tedenac, Structural and Optical properties of undoped and Aluminum doped ZnO nanoparticles Via Precipitation method at low Temp, J. Alloys Compd, 462 (2008) 335-339.

DOI: 10.1016/j.jallcom.2007.08.048

Google Scholar

[8] R. Chauhan, A. Kumar and R. P. Chaudhary, Synthesis and characterization of silver doped ZnO nanoparticles, Arch.Appl.Sci.Res., 2 (5) (2010) 378-385.

Google Scholar

[9] C-J. Pan, H-C. Hsu, H-M. Cheng, C-Y. Wu, W-F. Hsieh, Structural and optical properties of ZnMgO nanostructures formed by Mg in-diffused ZnO nanowires, J. Solid State Chem. 180 (2007) 1188–1192.

DOI: 10.1016/j.jssc.2007.01.014

Google Scholar

[10] Z. Fan, P.C. Chang, J.G. Lu, Photoluminescence and polarized photodetection of single ZnO nanowires, Appl. Physics. Lett.85 (2004) 6128-6130.

DOI: 10.1063/1.1841453

Google Scholar

[11] B. Cao, W. Cai, H. Zeng, Temperature-dependent shifts of three emission bands for ZnO Appl. Phy. Lett. 88 (2006) 161101.

DOI: 10.1063/1.2195694

Google Scholar

[12] Z. Fan, J.g. Lu, A.A. Bol, A. Meijerink, Synthesis and Properties of ZnO nanostructures, J. Nanosci. Technol. 5 (2005) 1561.

Google Scholar

[13] A.B. Djuisic, Y.H. Leung, Green Photoluminescence in ZnO Nanostructures, Appl.Phys. Lett. 84 (2004) 2635-2637.

Google Scholar

[14] R. Sanchez Zeferino, M. Barboza Flores, and U. Pal, photoluminescence and raman scattering in Ag-doped ZnO nanoparticles, J. Appl. Phys. 109 (2011) 014308.

DOI: 10.1063/1.3530631

Google Scholar

[15] Y. Huang, M. Liu, Z. Li, Y. Zeng, and S. Liu, Raman spectroscopy Study of ZnO based Ceramic Films Fabricated by novel Sol-gel Process, Mater. Sci. Eng. B. 97 (2003) 111-116.

DOI: 10.1016/s0921-5107(02)00396-3

Google Scholar

[16] J. Xu, Q. Pan, Q. Shun, and Z. Tian, Grain Size Control and Gas Sensing Properties of ZnO Gas Sensor, Sensor. Actuat. B-Chem., 66 (2000) 277- 279.

DOI: 10.1016/s0925-4005(00)00381-6

Google Scholar

[17] J.H. Lee, K.H. Ko, and B.O. Park, Electrical and Optical Properties of ZnO Transparent Conducting Films by the Sol-gel method, J. cryst. Growth, 247 (2003) 119- 125.

DOI: 10.1016/s0022-0248(02)01907-3

Google Scholar

[18] D.R. Patil, and L.A. Patil, Room Tempature Chlorine gas sensing using surface modified ZnO thick film resisters, Sensor. Actuat. B-Chem., 123 (2007) 546-553.

DOI: 10.1016/j.snb.2006.09.060

Google Scholar

[19] J. Lee, D. Lee, D. Lim, and K. Yang, Structural, Electrical and Optical Properties of ZnO:Al Films Deposited on Flexible Organic Substrates For Solar Cell Applications, Thin Solid Films, 515 (2007) 6094-6098.

DOI: 10.1016/j.tsf.2006.12.099

Google Scholar

[20] L. J. Zhuge, X.M. Wu, Z.F. Wu, X.M. Yang , X.M. Chen, Q. Chen, Mater. Chem. Phys. 120 (2010) 480-483.

Google Scholar

[21] F. Ochanda, K. Cho; D. Andala, T.C. Keane, A. Atkinson, W.E. Jones, Synthesis and Optical Properties of Co-doped ZnO Submicrometer Tubes from Electrospun Fiber Templates, Langmuir 25 (2009) 7547-52.

DOI: 10.1021/la802753k

Google Scholar

[22] G. Srinivasan, R.T. Rajendra Kumar, Growth and characterisation of manganese doped gallium nitride, J. Sol-gel Technol. 43 (2007) 171-177.

Google Scholar

[23] J. Liqiang, Q. Yichun, Wang Baiqi, Li Shudan, Jiang Baojiang, Yang Libin, Fu Honggang, Sun Jiazhong. Fu Wei, Review of photoluminescence performance of nano-sized semiconductor materials and its relationships with photo catalytic activity, Solar Energy Materials and Solar Cells 90 (2006) 1773-1787.

DOI: 10.1016/j.solmat.2005.11.007

Google Scholar