A Low Frequency Permanent Magnet Passive Vibration Isolator

Article Preview

Abstract:

Magnetic suspension vibration isolators have attracted significant attention in the field of semiconductor industry and high precision equipments. However, it is impossible to levitate an object by only permanent magnet due to instability of permanent magnets. It needs a guide device or active control to hold the magnetic suspension passive vibration isolator (MSPVI) at equilibrium position. In order to overcome the instability of the permanent magnets, the linear bearing, rubber O-ring and rubber membrane are applied in the MSPVI. The transmissibility of the MSPVI was calculated and subsequently measured. The experimental results show that the MSPVI can achieve low natural frequency with the help of the rubber membrane which is superior to the linear bearing and o-ring. Beside, the vibration isolating performance of the MSPVI is measured. The experimental results reveal that the MSPVI achieves the lowest resonant frequency when the load capacity of the MSPVI reaches maximum value.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

328-336

Citation:

Online since:

November 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] A.D. Angola, G. Carbone, L. Mangilalardi, C. Serio, Non-linear oscillations in a passive magnetic suspension, Inter. J. nonlin. Mech., 41(9)(2006): 1039-1049.

DOI: 10.1016/j.ijnonlinmec.2006.10.013

Google Scholar

[2] E. Bonisoli, A. Vigliani, Passive elasto-magnetic suspensions: nonlinear models and experimental outcomes, J. Mech. Res. Commun., 37(4)(2007): 385-394.

DOI: 10.1016/j.mechrescom.2007.02.005

Google Scholar

[3] E. puppin, V. Fratello, Vibration isolation with magnet springs, J. Rev. Sci. Instrum., 73(11)(2002): 4034-4036.

DOI: 10.1063/1.1512325

Google Scholar

[4] K. -B. Choi, Y. G. Cho, T. Shishi, A. Shimokohbe, Stabilization of one degree-of- freedom control type levitation table with magnet repulsive forces, J. Mechtronics., 13(6)(2003): 587-603.

DOI: 10.1016/s0957-4158(02)00032-6

Google Scholar

[5] W. S. Robertson, M.R.F. Kidner, B. S. Cazzolato, A. C. Zander, Theoretical design parameters for a quasi-zero stiffness magnetic spring for vibration isolation, J. Sound. Vib., 326(1)(2009): 88-103.

DOI: 10.1016/j.jsv.2009.04.015

Google Scholar

[6] W. Robertson, B. Cazzolato, A. Zander, Theoretical analysis of a non-contact spring with inclined permanent magnets for load-independent resonance frequency, J. Sound. Vib., 331(6)(2012): 1331-1341.

DOI: 10.1016/j.jsv.2011.11.011

Google Scholar

[7] Y. Zhu, Q. Li, D. Xu, M. Zhang, Modeling of axial magnetic force and stiffness of ring-shaped permanent magnets passive vibration isolator and its vibration isolating experiment, IEEE. Trans. Magn., DOI: 10. 1109/TMAG. 2012. 2188638.

DOI: 10.1109/tmag.2012.2188638

Google Scholar

[8] A. Carrella, M.J. Brennan, T.P. Waers, K. Shin, On the design of a high-static-low-dynamic stiffness isolator using linear mechanical springs, J. Sound. Vib., 2008, 315(3): 712-720.

DOI: 10.1016/j.jsv.2008.01.046

Google Scholar

[9] N. Zhou, K. Liu, A tunable high-static-low-dynamic stiffness vibration isolator, J. Sound. Vib., 329(9)(2010): 1254-1273.

DOI: 10.1016/j.jsv.2009.11.001

Google Scholar

[10] G. Coppola, K. Liu, Control of a unique active vibration with a phase comensation technique and automatic on/off switching, J. Sound. Vib., 329(25)(2010): 5233-5248.

DOI: 10.1016/j.jsv.2010.06.025

Google Scholar

[11] M. Hoque, T. Mizuno, Y. Ishino,M. Takasaki, A 3-dof modular vibration isolation system using zero-power magnetic suspension with adjustable negative stiffness, Proc. of the 11th IEEE Conference on Advanced Motion Control, Nagaoka, Japan, pp: 660-666, (2010).

DOI: 10.1109/amc.2010.5464051

Google Scholar

[12] A.A. Muniain, N.G. Negrete, L. Kari, Direct energy flow measurement in magneto- sensitive vibration isolator systems, J. Sound. Vib., 331(9)(2012): 1994-(2006).

DOI: 10.1016/j.jsv.2012.01.015

Google Scholar

[13] S. Earnshaw, On the nature of the molecular forces which regulate the constitution of the luminiferous ether, Trans. Cambridge Philos. Soc., 7(1)(1842): 97-112.

Google Scholar

[14] K. Nagaya, M. Ishikawa, A nocontact permanent magnet levitation table with electromagnetic control and its vibration isolation method using direct disturbance cancellation combining optimal regulations, IEEE. Trans. Magn., 31(1)(1995): 885-895.

DOI: 10.1109/20.364582

Google Scholar

[15] K. Nagaya, M. Sgiura, A method for obtaining a linear spring for a permanent magnet levitation system using electromagnetic control, IEEE Trans. Magn., 31(3) (1995): 2332-2338.

DOI: 10.1109/20.376226

Google Scholar

[16] J. Delamare, J.P. Yonnet, E. Rulliere, A compact magnetic suspension with only one axis control, IEEE Trans. Magn., 33(6)(1994): 4746-4748.

DOI: 10.1109/20.334209

Google Scholar

[17] C. Ding, J.L.G. Janssen, A.A.H. Damen, P.P.J. vanden Bosch, Modeling and control of a 6-DOF contactless electromagnetic suspension system with passive gravity compensation, Proc. of the XIX IEEE Conference on Electrical Machines, pp.1-6, (2010).

DOI: 10.1109/icelmach.2010.5607916

Google Scholar

[18] J. M. Hensley, A. Peters, S. Chu, Active low frequency vertical vibration isolation, Rev. Sci. Instrum., 70(6)(1999): 2735-2741.

DOI: 10.1063/1.1149838

Google Scholar

[19] Y. Kim, S. Kim, K. Park, Magnetic force driven sixe degree-of –freedom active vibration isolation system using a phase compensated velocity sensor, Rev. Sci. Instrum., 80(4)(2009): 1-6.

DOI: 10.1063/1.3117462

Google Scholar

[20] J. Hong, K. Park, Design and control of six degree-of-freedom active vibration isolation table, Rev. Sci. Instrum., 80(4)(2010): 1-6.

Google Scholar

[21] A. Hamler,V. Gorican, B. Stumberger, M. Jesenik, M. Trlep, Passive magnetic bearing, J. Magn. Magn. Mater., 272(3)(2004): 2379-2380.

DOI: 10.1016/j.jmmm.2003.12.972

Google Scholar

[22] R. Bassani, Levitation of passive magnetic bearings and systems, Tribol. Int., 39(9)(2006): 963-970.

DOI: 10.1016/j.triboint.2005.10.003

Google Scholar

[23] J. P. Yonnet, Permanent magnet bearings and couplings, IEEE Tran. Magn, 17(1) (1981): 1169-1173.

DOI: 10.1109/tmag.1981.1061166

Google Scholar