Properties of Aluminium Thin Films on Polyimide Plastics as Back Contacts in Thin Film Silicon Solar Cells

Article Preview

Abstract:

Aluminium (Al) thin films on polyimide (PI) plastic substrates prepared via thermal evaporation technique and annealed in nitrogen (N2) ambient at different temperatures (250 - 400°C, for 30 minutes) have been investigated. Structural properties of the as-evaporated film have been studied by high resolution X-ray diffraction (HR-XRD). The result illustrates crystalline nature of the Al thin film with a dominant Al (111) peak at 2θ = 38.4°. Atomic force microscope (AFM) shows increased surface roughness root mean square (RMS) with increased annealing temperature (with roughness of 11.96 nm at 400°C). Sheet resistance drops with increased temperature and records the lowest reading (64 mΩ/) at 400°C. Besides, increased annealing temperature also results in reduced surface reflectance (with minimum reflectance of 73% reflectance in the visible region at 400°C). The effects of the resulting Al back contact properties towards thin film silicon (Si) solar cells on PI substrates were subsequently discussed.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

474-479

Citation:

Online since:

December 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] R.B. Bergmann, G. Oswald, M. Albrecht and V. Gross: Solar Energy Materials & Solar Cells Vol. 46 (1997), pp.147-155.

DOI: 10.1016/s0927-0248(97)00006-8

Google Scholar

[2] B. Cui, Y. Cortot and T. Veres: Microelectronic Engineering Vol. 83 (2006), pp.906-909.

Google Scholar

[3] J. Lee, J. Kim and B.K. Rhee: Macromolecular Research Vol. 15 (2007), pp.234-237.

Google Scholar

[4] K. Otte, L. Makhova, A. Braun and I. Konovalov: Thin Solid Films Vol. 511-512 (2006), pp.613-622.

DOI: 10.1016/j.tsf.2005.11.068

Google Scholar

[5] K.L. Chopra, P.D. Paulson and V. Dutta: Progress in Photovoltaics Research & Applications Vol. 12 (2004), pp.69-92.

Google Scholar

[6] A.V. Shah, H. Schade, M. Vanecek, J. Meier, E. Vallat-Sauvain, N. Wyrsch, U. Kroll, C. Droz and J. Bailat: Progress in Photovoltaics Research & Applications Vol. 12 (2004), pp.113-142.

DOI: 10.1002/pip.533

Google Scholar

[7] O.J. Cain: Thin Solid Films Vol. 2 (1968), pp.479-486.

Google Scholar

[8] S. Tamai, T. Kuroki, A. Shibuya and A. Yamaguchi: Polymer Vol. 42 (2001), pp.2373-2378.

Google Scholar

[9] A. Selmani: Metallization of Polymers (American Chemical Society, 1990).

Google Scholar

[10] Information on http: /www. icdd. com.

Google Scholar

[11] J.I. Langford and A.J.C. Wilson: Journal of Applied Crystallography Vol. 11 (1978), pp.102-113.

Google Scholar

[12] P. Widenborg, A. Straub and A. Aberle: Journal of Crystal Growth Vol. 276 (2005), pp.19-28.

Google Scholar

[13] R.E.I. Schropp and M. Zeman: Amorphous and Microcrystalline Silicon Solar Cells: Modelling, Materials and Device Technology (Kluwer Academic Publishers, Boston 1998).

DOI: 10.1007/978-1-4615-5631-2

Google Scholar

[14] P.V. Andrews, M.B. West and C.R. Robeson: Philosophical Magazine Vol. 19 (1969), pp.887-898.

Google Scholar

[15] G.P. Smestad: Optoelectronics of Solar Cells (SPIE Press, Washington 2002).

Google Scholar

[16] R. Brendel: Thin-Film Crystalline Silicon Solar Cells: Physics and Technology (Wiley-VCH, Erlangen 2001).

Google Scholar